ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/137259.

A model of unitary responses from A/C and PP synapses in CA3 pyramidal cells (Baker et al. 2010)

 Download zip file 
Help downloading and running models
Accession:137259
The model was used to reproduce experimentally determined mean synaptic response characteristics of unitary AMPA and NMDA synaptic stimulations in CA3 pyramidal cells with the objective of inferring the most likely response properties of the corresponding types of synapses. The model is primarily concerned with passive cells, but models of active dendrites are included.
Reference:
1 . Baker JL, Perez-Rosello T, Migliore M, Barrionuevo G, Ascoli GA (2011) A computer model of unitary responses from associational/commissural and perforant path synapses in hippocampal CA3 pyramidal cells. J Comput Neurosci 31:137-58 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s):
Implementer(s): Baker, John L [jbakerb at gmu.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; AMPA; NMDA; Glutamate;
/
ca3-synresp
readme.html
cacumm.mod
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
distr.mod
exp2nmdar.mod
h.mod *
kadist.mod *
KahpM95.mod *
kaprox.mod *
kd.mod *
kdrca1.mod *
km.mod *
na3n.mod *
ama-c30573.CNG.hoc
ama-c31162.CNG.hoc
ama-c60361.CNG.hoc
ama-c62563.CNG.hoc
ama-c73164.CNG.hoc
ama-c81463.CNG.hoc
axon-common.hoc
bar-cell1zr.CNG.hoc
bar-cell2zr.CNG.hoc
bar-cell3zr.CNG.hoc
bar-cell4zr.CNG.hoc
bar-cell5zr.CNG.hoc
bar-cell6zr.CNG.hoc
bar-cell7zr.CNG.hoc
bar-cell8zr.CNG.hoc
demo.hoc
demo.png
demo.ses
demo-fig2a-raw-data.csv
demo-fig2a-raw-time.csv *
demo-fig2a-smoothed-data.csv
demo-fig2a-smoothed-time.csv *
mosinit.hoc
out-vc-ampar-c31162-ad67-022.csv
out-vc-ampar-c62563-ad2-01667.csv
out-vc-ampar-c62563-ad54-054.csv
out-vc-fastampar-c62563-ad2-01667.csv
out-vc-nmdar-c81463-ad87-082.csv
out-vc-nmdar-l51-ad7-036.csv
params-by-fig.csv
synresp.hoc
synresp-c30573.hoc
synresp-c31162.hoc
synresp-c60361.hoc
synresp-c62563.hoc
synresp-c73164.hoc
synresp-c81463.hoc
synresp-cell1zr.hoc
synresp-cell2zr.hoc
synresp-cell3zr.hoc
synresp-cell4zr.hoc
synresp-cell5zr.hoc
synresp-cell6zr.hoc
synresp-cell7zr.hoc
synresp-cell8zr.hoc
synresp-l24b.hoc
synresp-l51.hoc
synresp-l56a.hoc
tur-l24b.CNG.hoc
tur-l51.CNG.hoc
tur-l56a.CNG.hoc
                            
TITLE na3
: Na current 
: modified from Jeff Magee. M.Migliore may97
: added sh to account for higher threshold M.Migliore, Apr.2002

NEURON {
	SUFFIX na3
	USEION na READ ena WRITE ina
	RANGE  gbar, ar, sh
	GLOBAL minf, hinf, mtau, htau, sinf, taus,qinf, thinf
}

PARAMETER {
	sh   = 24	(mV)
	gbar = 0.010   	(mho/cm2)	
								
	tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.2	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	thi1  = -45	(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact 	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
	mmin=0.02	
	hmin=0.5			
	q10=2
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	
	qq   = 10        (mV)
	tq   = -55      (mV)

	thinf  = -50 	(mV)		: inact inf slope	
	qinf  = 4 	(mV)		: inact inf slope 

        vhalfs=-60	(mV)		: slow inact.
        a0s=0.0003	(ms)		: a0s=b0s
        zetas=12	(1)
        gms=0.2		(1)
        smax=10		(ms)
        vvh=-58		(mV) 
        vvs=2		(mV)
        ar=1		(1)		: 1=no inact., 0=max inact.
	ena		(mV)            : must be explicitly def. in hoc
	celsius
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
	sinf (ms)	taus (ms)
}
 

STATE { m h s}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h*s
	ina = thegna * (v - ena)
} 

INITIAL {
	trates(v,ar,sh)
	m=minf  
	h=hinf
	s=sinf
}


FUNCTION alpv(v(mV)) {
         alpv = 1/(1+exp((v-vvh-sh)/vvs))
}
        
FUNCTION alps(v(mV)) {  
  alps = exp(1.e-3*zetas*(v-vhalfs-sh)*9.648e4/(8.315*(273.16+celsius)))
}

FUNCTION bets(v(mV)) {
  bets = exp(1.e-3*zetas*gms*(v-vhalfs-sh)*9.648e4/(8.315*(273.16+celsius)))
}

LOCAL mexp, hexp, sexp

DERIVATIVE states {   
        trates(v,ar,sh)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
        s' = (sinf - s)/taus
}

PROCEDURE trates(vm,a2,sh2) {  
        LOCAL  a, b, c, qt
        qt=q10^((celsius-24)/10)
	a = trap0(vm,tha+sh2,Ra,qa)
	b = trap0(-vm,-tha-sh2,Rb,qa)
	mtau = 1/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
	minf = a/(a+b)

	a = trap0(vm,thi1+sh2,Rd,qd)
	b = trap0(-vm,-thi2-sh2,Rg,qg)
	htau =  1/(a+b)/qt
        if (htau<hmin) {htau=hmin}
	hinf = 1/(1+exp((vm-thinf-sh2)/qinf))
	c=alpv(vm)
        sinf = c+a2*(1-c)
        taus = bets(vm)/(a0s*(1+alps(vm)))
        if (taus<smax) {taus=smax}
}

FUNCTION trap0(v,th,a,q) {
	if (fabs(v-th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}	

        

Loading data, please wait...