Thalamic network model of deep brain stimulation in essential tremor (Birdno et al. 2012)

 Download zip file 
Help downloading and running models
Accession:143633
"... Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus."
References:
1 . Birdno MJ, Kuncel AM, Dorval AD, Turner DA, Gross RE, Grill WM (2012) Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol 107:364-83 [PubMed]
2 . Yi G, Grill WM (2018) Frequency-dependent antidromic activation in thalamocortical relay neurons: effects of synaptic inputs. J Neural Eng 15:056001 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon;
Brain Region(s)/Organism:
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA; Glutamate; Gaba;
Gene(s):
Transmitter(s): Gaba; Ions;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Action Potential Initiation; Temporal Pattern Generation; Axonal Action Potentials; Therapeutics; Deep brain stimulation;
Implementer(s):
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; GabaA; GabaB; AMPA; NMDA; Glutamate; Gaba; Gaba; Ions;
/
Birdno_et_al_2012
master
ampa.mod *
ampacer.mod *
ampactx.mod *
asymtrain.mod *
AXNODE75mb.mod *
FakeExcSyn.mod *
gabaa.mod *
gababKG.mod *
ihshift.mod *
ik2.mod *
isikdr.mod *
isina.mod *
it.mod *
kdyn.mod *
leakdepol.mod *
mdltrdyn.mod *
nmda.mod *
nmdacer.mod *
nmdactx.mod *
PARAK75.mod *
apc_names.dat
Axon_template_15nodes.hoc
Axon_template_30nodes.hoc
create_coords_for_FEM.m
DBSstim.hoc
Drop_ax1.dat
Drop1_ind.mat
Full_3d_Vim_locs_2009Feb.mat
generate_stim_poisson_harmaline.m
Genes_1.mat
Harmaline.dat
noplot.ses
PHI_by_cell.mat
phi_pop1_cell_1.dat
phi_pop1_cell_10.dat
phi_pop1_cell_100.dat
phi_pop1_cell_11.dat
phi_pop1_cell_12.dat
phi_pop1_cell_13.dat
phi_pop1_cell_14.dat
phi_pop1_cell_15.dat
phi_pop1_cell_16.dat
phi_pop1_cell_17.dat
phi_pop1_cell_18.dat
phi_pop1_cell_19.dat
phi_pop1_cell_2.dat
phi_pop1_cell_20.dat
phi_pop1_cell_21.dat
phi_pop1_cell_22.dat
phi_pop1_cell_23.dat
phi_pop1_cell_24.dat
phi_pop1_cell_25.dat
phi_pop1_cell_26.dat
phi_pop1_cell_27.dat
phi_pop1_cell_28.dat
phi_pop1_cell_29.dat
phi_pop1_cell_3.dat
phi_pop1_cell_30.dat
phi_pop1_cell_31.dat
phi_pop1_cell_32.dat
phi_pop1_cell_33.dat
phi_pop1_cell_34.dat
phi_pop1_cell_35.dat
phi_pop1_cell_36.dat
phi_pop1_cell_37.dat
phi_pop1_cell_38.dat
phi_pop1_cell_39.dat
phi_pop1_cell_4.dat
phi_pop1_cell_40.dat
phi_pop1_cell_41.dat
phi_pop1_cell_42.dat
phi_pop1_cell_43.dat
phi_pop1_cell_44.dat
phi_pop1_cell_45.dat
phi_pop1_cell_46.dat
phi_pop1_cell_47.dat
phi_pop1_cell_48.dat
phi_pop1_cell_49.dat
phi_pop1_cell_5.dat
phi_pop1_cell_50.dat
phi_pop1_cell_51.dat
phi_pop1_cell_52.dat
phi_pop1_cell_53.dat
phi_pop1_cell_54.dat
phi_pop1_cell_55.dat
phi_pop1_cell_56.dat
phi_pop1_cell_57.dat
phi_pop1_cell_58.dat
phi_pop1_cell_59.dat
phi_pop1_cell_6.dat
phi_pop1_cell_60.dat
phi_pop1_cell_61.dat
phi_pop1_cell_62.dat
phi_pop1_cell_63.dat
phi_pop1_cell_64.dat
phi_pop1_cell_65.dat
phi_pop1_cell_66.dat
phi_pop1_cell_67.dat
phi_pop1_cell_68.dat
phi_pop1_cell_69.dat
phi_pop1_cell_7.dat
phi_pop1_cell_70.dat
phi_pop1_cell_71.dat
phi_pop1_cell_72.dat
phi_pop1_cell_73.dat
phi_pop1_cell_74.dat
phi_pop1_cell_75.dat
phi_pop1_cell_76.dat
phi_pop1_cell_77.dat
phi_pop1_cell_78.dat
phi_pop1_cell_79.dat
phi_pop1_cell_8.dat
phi_pop1_cell_80.dat
phi_pop1_cell_81.dat
phi_pop1_cell_82.dat
phi_pop1_cell_83.dat
phi_pop1_cell_84.dat
phi_pop1_cell_85.dat
phi_pop1_cell_86.dat
phi_pop1_cell_87.dat
phi_pop1_cell_88.dat
phi_pop1_cell_89.dat
phi_pop1_cell_9.dat
phi_pop1_cell_90.dat
phi_pop1_cell_91.dat
phi_pop1_cell_92.dat
phi_pop1_cell_93.dat
phi_pop1_cell_94.dat
phi_pop1_cell_95.dat
phi_pop1_cell_96.dat
phi_pop1_cell_97.dat
phi_pop1_cell_98.dat
phi_pop1_cell_99.dat
phi_pop1_filenames.dat
plot.ses
plotnew.ses
plotnewG.ses
Poisson.dat
Pop1XYZPhi_vim_0.2_UMFPACK_afferent.txt
quit.hoc
shannon_entropy.m
Stim_1.dat
Stim_2.dat
Stim_3.dat
Stim_4.dat
Stim_5.dat
Stim_6.dat
Stim_7.dat
TCmodel_short30mb.hoc
XYZ_30nodes.mat
                            
COMMENT
-----------------------------------------------------------------------------
Simple synaptic mechanism derived for first order kinetics of
binding of transmitter to postsynaptic receptors.

A. Destexhe & Z. Mainen, The Salk Institute, March 12, 1993.

General references:

   Destexhe, A., Mainen, Z.F. and Sejnowski, T.J.  An efficient method for
   computing synaptic conductances based on a kinetic model of receptor binding
   Neural Computation 6: 10-14, 1994.  

   Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for
   excitable membranes, synaptic transmission and neuromodulation using a 
   common kinetic formalism, Journal of Computational Neuroscience 1: 
   195-230, 1994.

-----------------------------------------------------------------------------

During the arrival of the presynaptic spike (detected by threshold 
crossing), it is assumed that there is a brief pulse (duration=Cdur)
of neurotransmitter C in the synaptic cleft (the maximal concentration
of C is Cmax).  Then, C is assumed to bind to a receptor Rc according 
to the following first-order kinetic scheme:

Rc + C ---(Alpha)--> Ro							(1)
       <--(Beta)--- 

where Rc and Ro are respectively the closed and open form of the 
postsynaptic receptor, Alpha and Beta are the forward and backward
rate constants.  If R represents the fraction of open gates Ro, 
then one can write the following kinetic equation:

dR/dt = Alpha * C * (1-R) - Beta * R					(2)

and the postsynaptic current is given by:

Isyn = gmax * R * (V-Erev)						(3)

where V is the postsynaptic potential, gmax is the maximal conductance 
of the synapse and Erev is the reversal potential.

If C is assumed to occur as a pulse in the synaptic cleft, such as

C     _____ . . . . . . Cmax
      |   |
 _____|   |______ . . . 0 
     t0   t1

then one can solve the kinetic equation exactly, instead of solving
one differential equation for the state variable and for each synapse, 
which would be greatly time consuming...  

Equation (2) can be solved as follows:

1. during the pulse (from t=t0 to t=t1), C = Cmax, which gives:

   R(t-t0) = Rinf + [ R(t0) - Rinf ] * exp (- (t-t0) / Rtau )		(4)

where 
   Rinf = Alpha * Cmax / (Alpha * Cmax + Beta) 
and
   Rtau = 1 / (Alpha * Cmax + Beta)

2. after the pulse (t>t1), C = 0, and one can write:

   R(t-t1) = R(t1) * exp (- Beta * (t-t1) )				(5)

There is a pointer called "pre" which must be set to the variable which
is supposed to trigger synaptic release.  This variable is usually the
presynaptic voltage but it can be the presynaptic calcium concentration, 
or other.  Prethresh is the value of the threshold at which the release is
initiated.

Once pre has crossed the threshold value given by Prethresh, a pulse
of C is generated for a duration of Cdur, and the synaptic conductances
are calculated accordingly to eqs (4-5).  Another event is not allowed to
occur for Deadtime milliseconds following after pre rises above threshold.

The user specifies the presynaptic location in hoc via the statement
	connect pre_GLU[i] , v.section(x)

where x is the arc length (0 - 1) along the presynaptic section (the currently
specified section), and i is the synapse number (Which is located at the
postsynaptic location in the usual way via
	postsynaptic_section {loc_GLU(i, x)}
Notice that loc_GLU() must be executed first since that function also
allocates space for the synapse.
-----------------------------------------------------------------------------

  KINETIC MODEL FOR GLUTAMATERGIC AMPA/KAINATE RECEPTORS

Whole-cell recorded postsynaptic currents mediated by AMPA/Kainate receptors
(Xiang et al., J. Neurophysiol. 71: 2552-2556, 1994) were used to estimate the
parameters of the present model; the fit was performed using a simplex
algorithm (see Destexhe et al., J. Computational Neurosci. 1: 195-230, 1994).

-----------------------------------------------------------------------------
ENDCOMMENT



INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS AMPA
	POINTER pre
	RANGE C, R, R0, R1, g, gmax, lastrelease
	NONSPECIFIC_CURRENT i
	GLOBAL Cmax, Cdur, Alpha, Beta, Erev, Prethresh, Deadtime, Rinf, Rtau
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
	(mM) = (milli/liter)
}

PARAMETER {

	Cmax	= 1	(mM)		: max transmitter concentration
	Cdur	= 1	(ms)		: transmitter duration (rising phase)
	Alpha	= 1.1	(/ms mM)	: forward (binding) rate
	Beta	= 0.19	(/ms)		: backward (unbinding) rate
	Erev	= 0	(mV)		: reversal potential
	Prethresh = 0 			: voltage level nec for release
	Deadtime = 1	(ms)		: mimimum time between release events
	gmax		(umho)		: maximum conductance
}


ASSIGNED {
	v		(mV)		: postsynaptic voltage
	i 		(nA)		: current = g*(v - Erev)
	g 		(umho)		: conductance
	C		(mM)		: transmitter concentration
	R				: fraction of open channels
	R0				: open channels at start of release
	R1				: open channels at end of release
	Rinf				: steady state channels open
	Rtau		(ms)		: time constant of channel binding
	pre 				: pointer to presynaptic variable
	lastrelease	(ms)		: time of last spike
}

INITIAL {
	R = 0
	C = 0
	Rinf = Cmax*Alpha / (Cmax*Alpha + Beta)
	Rtau = 1 / ((Alpha * Cmax) + Beta)
	lastrelease = -9e9
}

BREAKPOINT {
	SOLVE release
	g = gmax * R
	i = g*(v - Erev)
}

PROCEDURE release() { LOCAL q
	:will crash if user hasn't set pre with the connect statement 

	q = ((t - lastrelease) - Cdur)		: time since last release ended

						: ready for another release?
	if (q > Deadtime) {
		if (pre > Prethresh) {		: spike occured?
			C = Cmax			: start new release
			R0 = R
			lastrelease = t
		}
						
	} else if (q < 0) {			: still releasing?
	
		: do nothing
	
	} else if (C == Cmax) {			: in dead time after release
		R1 = R
		C = 0.
	}



	if (C > 0) {				: transmitter being released?

	   R = Rinf + (R0 - Rinf) * exptable (- (t - lastrelease) / Rtau)
				
	} else {				: no release occuring

  	   R = R1 * exptable (- Beta * (t - (lastrelease + Cdur)))
	}

	VERBATIM
	return 0;
	ENDVERBATIM
}

FUNCTION exptable(x) { 
	TABLE  FROM -10 TO 10 WITH 2000

	if ((x > -10) && (x < 10)) {
		exptable = exp(x)
	} else {
		exptable = 0.
	}
}

Loading data, please wait...