Point process framework for modeling electrical stimulation of auditory nerve (Goldwyn et al. 2012)

 Download zip file 
Help downloading and running models
Accession:143760
A point process model of the auditory nerve that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the model consists of a cascade of linear and nonlinear stages. A semi-analytical procedure uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation.
Reference:
1 . Goldwyn JH, Rubinstein JT, Shea-Brown E (2012) A point process framework for modeling electrical stimulation of the auditory nerve. J Neurophysiol 108:1430-52 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Auditory nerve;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Audition;
Implementer(s): Goldwyn, Joshua [jhgoldwyn at gmail.com];
function [Alpha, AlphaApprox, TauKappa, Beta, Kappa, TauJ] = Parameterize(RelativeSpread, Chronaxie, TauSum, Threshold, Jitter, KnownInput)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameterize.m
% Joshua Goldwyn
% 5/10/11
%  
% This function parameterizes the AN model presented in
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% Values used in simulations
%[Alpha, AlphaApprox, TauKappa, Beta, Kappa, TauJ] = Parameterize(.0487, 276, 250, .852, 85.5,[0 0 0 0 0]); 
%[Alpha, AlphaApprox, TauKappa, Beta, TauJ] =   [25.6337   24.5196 325.3700 0.3330   9.3649 96.9336]
%%%


% Some needed variables
dt = 1; % mu sec, for evaluating integrals and filters
MaxPhaseDur = 2000;  % Used in Chronaxie mu sec

% Pulses for Summation Experiment (Cartee et al 2006)
SummationPhaseDur = 50;
SummationPulseShape = 'pseudo';
IPIall = [100 200 300];

% Pulses for Threshold Experiment (Miller et al 2001 biphasic experiments)
ThresholdPhaseDur = 40;
ThresholdPulseShape = 'bi';

% Pulses for Jitter Experiment (Miller et al 2001 biphasic experiments)
JitterPhaseDur = 40;
JitterPulseShape = 'bi';

% Approximation of Alpha vs RS
AlphaApproximation = @(rs) rs.^(-1.0587);
% %%%% NOTE THIS CODE GIVES THE APPROXIMATION:
% RSfunc = @(a) sqrt(gamma(1+2./a)./(gamma(1+1./a)).^2 - 1);
% Alpha = linspace(1,100,1E3);
% p = fminsearch(@(p) norm(RSfunc(Alpha).^p-Alpha),-1);
% %%%%%%%%%%%%%%%%


if KnownInput(1)>0
    Alpha = KnownInput(1);
else
%%% First Compute Alpha for given RS
% RS as a function of alpha using, using st dev / mean of Weibull distribution
RSfunc = @(a) sqrt(gamma(1+2./a)./(gamma(1+1./a)).^2 - 1);
Alpha = fminsearch(@(a) norm(RSfunc(a) - RelativeSpread), 10);
end
AlphaApprox = AlphaApproximation(RelativeSpread);


if KnownInput(2)>0
    TauKappa = KnownInput(2);
else
%%% Next Compute TauKappa for given Chronaxie
% Maximum Phase Duration Used in Van den Honert and Stypulkowski 1984
TauKappa = fminsearch(@(tk) ChronaxieFit(tk, Chronaxie, MaxPhaseDur, AlphaApprox, dt), 100);
end

if KnownInput(3)>0
    Beta = KnownInput(3);
else
%%% Next Compute Beta for given Summation Time Constant
Beta = fminbnd(@(b) SummationFit(b, TauSum, SummationPhaseDur, AlphaApprox, TauKappa, dt, SummationPulseShape, IPIall),0,1);
end

if KnownInput(4)>0
    Kappa = KnownInput(4);
else
%%% Next Compute Kappa for given Threshold
tend = 5000;
t = 0:dt:tend;
D = ThresholdPhaseDur;  %phase duration
switch ThresholdPulseShape
    case 'bi'
        w = zeros(1,length(t)); w(1:D/dt) = 1; w(D/dt+1:2*D/dt)=-Beta; %biphasic
end

wFold = 0;
wold = 0;
for i=1:length(t)
    wFilter(i) = wFold*exp(-dt/TauKappa)+(dt / (2*TauKappa))*(wold*exp(-dt/TauKappa)+w(i));%conv(1/TauKappa * exp(-t/TauKappa), w)*dt;
    wFold = wFilter(i);
    wold = w(i);
end
W = wFilter(1:length(t)).*(wFilter(1:length(t))>0); % output of stimulus filter, no kappa
intW = trapz(W.^AlphaApprox)*dt; % integrate response

Kappa = (log(2)/intW).^(1/AlphaApprox)./ Threshold;


end


if KnownInput(5)>0
    TauJ = KnownInput(5);
else
%%% Last, compute TauJ for Jitter Filter
TauJ = fminsearch(@(tj) JitterFit(Jitter, tj, JitterPhaseDur, TauKappa, Beta, AlphaApprox, Kappa, Threshold,dt), 100);
end

end



function [CAerror] = ChronaxieFit(TauKappa, Chronaxie, MaxPhaseDur, Alpha, dt)
    % TauKappa will be fit based on this function

    % Total time to evaluate FE
    tend = 5000; 
    
    % Phase durations
    D0 = Chronaxie/dt;
    Dmax = MaxPhaseDur/dt;
    
    t = 0:dt:tend;

    % waveform functions, always monophasic
    w1 = zeros(1,length(t)); w1(1:D0/dt) = 1; 
    w2 = zeros(1,length(t)); w2(1:Dmax/dt) = 1; 
  
    % Apply K filter
    w1Filter = conv(1/TauKappa * exp(-t/TauKappa), w1)*dt;
    w2Filter = conv(1/TauKappa * exp(-t/TauKappa), w2)*dt;
    W1 = w1Filter(1:length(t)).*(w1Filter(1:length(t))>0); % output of stimulus filter, no kappa because cancels out later
    W2 = w2Filter(1:length(t)).*(w2Filter(1:length(t))>0); % output of stimulus filter, no kappa because cancels out later

    % Apply nonlinearity and Integrate Responses
    intW1 = trapz(W1.^Alpha)*dt;
    intW2 = trapz(W2.^Alpha)*dt;
    
    % Error function that can be used to determine TauKappa
    CAerror = norm(2^Alpha - (intW2/intW1));
    
end

function [SumError] = SummationFit(Beta, TauSum, PhaseDur, Alpha, TauKappa, dt, StimulusType, IPIall)

    % Total time to evaluate FE
    tend = 5000; 

    % Pulse Tain Parameters
    D =  PhaseDur;

    % t
    t = 0:dt:tend;
 
for i=1:length(IPIall)
    IPI = IPIall(i);
    
    % PseudoMonophasic
    switch StimulusType
        case 'pseudo'
            tau = 5E6; % Cartee time constant defined by hardware
            w1 = zeros(1,length(t)); w1(1:D/dt) = 1; 
            tt = t(D/dt+1:IPI/dt) - D;
            w1(D/dt+1:IPI/dt)= w1(D/dt+1:IPI/dt) -Beta * D * exp(-(tt-D)/tau) / (tau*(1-exp(-(IPI-D)/tau)));
            w2= w1; w2(IPI/dt+1:IPI/dt+D/dt) = w2(IPI/dt+1:IPI/dt+D/dt)+1;  % 2nd pulse
            w2((IPI+D)/dt+1:(2*IPI)/dt)= w2((IPI+D)/dt+1:(2*IPI)/dt) - Beta*D*exp(-(tt-D)/tau) / (tau*(1-exp(-(IPI-D)/tau)));

        case 'bi' % Biphasic
            w1 = zeros(1,length(t)); w1(1:D/dt) = 1; 
            w1(D/dt+1:(2*D)/dt)= w1(D/dt+1:(2*D)/dt) - Beta;
            w2= w1; w2(IPI/dt+1:IPI/dt+D/dt) = w2(IPI/dt+1:IPI/dt+D/dt)+1;  % 2nd pulse
            w2((IPI+D)/dt+1:(IPI+2*D)/dt) = w2((IPI+D)/dt+1:(IPI+2*D)/dt)-Beta;  % 2nd pulse
    end

        % Apply K filter
        w1Filter = conv(1/TauKappa * exp(-t/TauKappa), w1)*dt;
        w2Filter = conv(1/TauKappa * exp(-t/TauKappa), w2)*dt;
        W1 = w1Filter(1:length(t)).*(w1Filter(1:length(t))>0); % output of stimulus filter, no kappa
        W2 = w2Filter(1:length(t)).*(w2Filter(1:length(t))>0); % output of stimulus filter, no kapp

        intW1 = trapz(W1.^Alpha)*dt;
        intW2 = trapz(W2.^Alpha)*dt;

        ThreshRatio(i) = (intW1/intW2)^(1/Alpha);
    end

    % Error Using Equation in Cartee et al
    SumError = norm( (1-.5*exp(-IPIall/TauSum)) - ThreshRatio);

end





function [JitterError] = JitterFit(jit, tauj, PhaseDur, TauKappaFit, BetaFit, AlphaFit, KappaFit, ThreshVal,dt)

    tend = 5000;
    t = 0:dt:tend;
    D = PhaseDur;  %phase duration
    w = zeros(1,length(t)); w(1:D/dt) = 1; w(D/dt+1:2*D/dt)=-BetaFit; %biphasic
    wFilter = conv(1/TauKappaFit * exp(-t/TauKappaFit), w)*dt;
    W = wFilter(1:length(t)).*(wFilter(1:length(t))>0); % output of stimulus filter, no kappa
 
    JWFilter = conv(1/tauj* exp(-t/tauj), W.^AlphaFit)*dt;
    JW = JWFilter(1:length(t)).*(JWFilter(1:length(t))>0);
    lambda = (KappaFit*ThreshVal)^AlphaFit * JW;
    Lambda = cumtrapz(lambda)*dt;
    f = 2*lambda.*exp(-Lambda);
    jj = sqrt(trapz(t.^2.*f) - trapz(t.*f).^2 );

    JitterError = norm(jj -jit);

end

Loading data, please wait...