Point process framework for modeling electrical stimulation of auditory nerve (Goldwyn et al. 2012)

 Download zip file 
Help downloading and running models
Accession:143760
A point process model of the auditory nerve that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the model consists of a cascade of linear and nonlinear stages. A semi-analytical procedure uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation.
Reference:
1 . Goldwyn JH, Rubinstein JT, Shea-Brown E (2012) A point process framework for modeling electrical stimulation of the auditory nerve. J Neurophysiol 108:1430-52 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Auditory nerve;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Audition;
Implementer(s): Goldwyn, Joshua [jhgoldwyn at gmail.com];
% Sample code to generate a spike train
% Point process model developed by Goldwyn, Rubinstein, Shea-Brown for
% response of auditory nerve fiber to cochlear implant stimulation
% See Goldwyn, Rubinstein, Shea-Brown "A point process framework for modeling electrical stimulation of the auditory nerve" arXiv:1201.5428
% Last updated: June 2012 (JHG)

% User can define:
% Neural Parameters: threshold, relative spread, chronaxie, summation time constant, jitter, refractory effects on threshold and relative spread
% Simulation Parameters: Length of stimulus, pulse rate, phase duration, current level per pulse

% Spike train Output variables:
%  SpikeCount (number of spikes) and SpikeTrain (list of spike times in  micro sec)

close all
clear all

% Neural parameters defining the model
RelativeSpread = 0.0487;
Chronaxie = 276; % micro sec
TauSum = 250; % micro sec
Threshold = 0.852; % mA
Jitter = 85.5;  % micro sec
AbsRef = 332; % micro sec
RelRef = 411; % Time scale of relative refractory period (micro sec)
AbsRS = 199. ;
RelRS = 423. ;
ThresholdPhaseDuration = 40;  % Phase duration used for stimulation that defines threshold

% Compute associated model parameters
[Alpha, AlphaApprox, TauKappa, Beta, Kappa, TauJ] = Parameterize(RelativeSpread, Chronaxie, TauSum, Threshold, Jitter,[0 0 0 0 0]);

% Define Refractory Functions (time in these functions is in micro s)
theta_func = @(theta,t) 99999.*(t<AbsRef) + (t>AbsRef)*theta / (1.0 - exp(-(t-AbsRef)/RelRef)) ;
rs_func = @(rs,t) min(.5, rs*(t<AbsRef) + (t>AbsRef)*rs / ( 1.0 - exp(-(t-AbsRS)/RelRS)));

% Build look up table that will be used to determine kappa for varying values of alpha
intW = zeros(5000,1);
tend = 5000;
dt = 1.;
tt = 0:dt:tend;
for i=1:size(intW)
    ialpha = i/100.;
    w = zeros(1,length(tt)); 
    w(1:ThresholdPhaseDuration/dt) = 1; 
    w(ThresholdPhaseDuration/dt+1:2*ThresholdPhaseDuration/dt)=-Beta; %biphasic
    wFold = 0;
    wold = 0;
    for ii=1:length(tt)
        wFilter(ii) = wFold*exp(-dt/TauKappa)+(dt / (2*TauKappa))*(wold*exp(-dt/TauKappa)+w(ii));
        wFold = wFilter(ii);
        wold = w(ii);
    end
    W = wFilter(1:length(tt)).*(wFilter(1:length(tt))>0); % output of stimulus filter, no kappa
    intW(i) = trapz(W.^ialpha)*dt; % integrate response
end

%%  This double-% symbol indicates that the script can be run in two pieces by pressing command+return with cursor in the desired box
% The first half other script is slow, but only needs to be run once per "neuron"
% The second half (everything below here) runs the spike train generator

tic;  % Start timer 

% Simulation time (micro sec)
t_begin = 0;
t_end = 1E6; 
dt = 1.;
t = t_begin:dt:t_end;
nt = length(t);

% Stimulus (Here is an example of a train of constant current level, biphasic pulses)
CurrentLevel = 0.462; % mA 
PhaseDuration = 40;   %micro  sec
PulseRate = 5000;  % pulses per second
P  = [CurrentLevel PhaseDuration PulseRate]; % Vector of Parameter Values passed in to Current.m
I = Current(t,P);  % Using Current.m to define stimulus


%%%%%%%%%%%%% Run Point Process Model And Record Spike Times %%%%%%%%%%%%%
% Initial Values
v = 0;
w = 0;
ci =0;
Integrate_ci = 0;
TimeSinceSpike = 1E6;  % Make it big if want no spike history at stimulus onset
AlphaVal = AlphaApprox;
ThresholdUpdate = Threshold;
RelativeSpreadUpdate= RelativeSpread;
SpikeCount = 0;
SpikeTrain = zeros(ceil(t_end/PulseRate),1);
r = -log(rand);
Iin = 0;

for i=2:nt
    
  TimeSinceSpike = TimeSinceSpike+dt;
  
  Iin_old = Iin;
  if (I(i-1)>0) % Positive phase
      Iin = I(i-1);
  elseif (I(i-1)<0) % Negative phase
      Iin = Beta*I(i-1);
  else
      Iin = 0;
  end
  
  if (TimeSinceSpike < AbsRef) % in absolute refractory period
    v = 0;
  else % Update state variable 
            v = v*exp(-dt/TauKappa) + (dt*Kappa/(2.*TauKappa)) * (Iin_old*exp(-dt/TauKappa) + Iin); % Stimulus filter, convolution using Trapezoid method
  end
  
  % Apply nonlinearity
  w_old = w;  % Save this old value for later calculation
  w = max(0,v)^AlphaVal;

  % Apply Jitter Filter
  ci_old = ci; % Conditional Intensity Value
  ci = ci*exp(-dt/TauJ) + dt /(2.*TauJ) * (w + w_old*exp(-dt/TauJ));
  
  % Integrate Conditional Intensity with Trapezoid method
  Integrate_ci = Integrate_ci + dt*ci;%(dt *(ci+ci_old))/2; 
  
  % Check for spikes
  if (Integrate_ci > r)  % SPIKE!

      % Record Spike
      SpikeCount = SpikeCount + 1;
      SpikeTrain(SpikeCount) = t(i);

      % Reset dynamical variables
      v=0; w=0; ci=0; Integrate_ci=0;  
      TimeSinceSpike = 0;
      
      % Draw New Random Number
      r = -log(rand);

  end
  
  % Update Spike Dependent Parameter Values at onset of next pulse
  if mod(t(i),1E6/(PulseRate*dt))==0 % new pulse

      RelativeSpreadUpdate = rs_func(RelativeSpread,TimeSinceSpike);
      ThresholdUpdate = theta_func(Threshold,TimeSinceSpike);
      AlphaVal = RelativeSpreadUpdate^(-1.0587); % approximation to exact expression       
      if TimeSinceSpike>AbsRef
          Kappa = (log(2)/intW(round(AlphaVal*100))).^(1/AlphaVal)./ ThresholdUpdate;
      else
          Kappa = 0;
      end
      
  end
  
end  % End loop over time steps


% Plot ISI histogram
maxt = 25;
[y,x] = hist(diff(.001*SpikeTrain(1:SpikeCount)),0:.05:maxt);
set(gca,'FontSize',18)
plot(x,y,'-','LineWidth',1)
xlabel('Interspike interval (ms)')
ylabel('Number of occurrences')
title('ISI histogram', 'FontSize',20)
xlim([0 maxt])

display(['Run Time = ', num2str(toc)])
display(['Spike/Second = ',num2str(SpikeCount/t_end*1E6)])

Loading data, please wait...