Distributed cerebellar plasticity implements adaptable gain control (Garrido et al., 2013)

 Download zip file 
Help downloading and running models
Accession:150067
We tested the role of plasticity distributed over multiple synaptic sites (Hansel et al., 2001; Gao et al., 2012) by generating an analog cerebellar model embedded into a control loop connected to a robotic simulator. The robot used a three-joint arm and performed repetitive fast manipulations with different masses along an 8-shape trajectory. In accordance with biological evidence, the cerebellum model was endowed with both LTD and LTP at the PF-PC, MF-DCN and PC-DCN synapses. This resulted in a network scheme whose effectiveness was extended considerably compared to one including just PF-PC synaptic plasticity. Indeed, the system including distributed plasticity reliably self-adapted to manipulate different masses and to learn the arm-object dynamics over a time course that included fast learning and consolidation, along the lines of what has been observed in behavioral tests. In particular, PF-PC plasticity operated as a time correlator between the actual input state and the system error, while MF-DCN and PC-DCN plasticity played a key role in generating the gain controller. This model suggests that distributed synaptic plasticity allows generation of the complex learning properties of the cerebellum.
Reference:
1 . Garrido JA, Luque NR, D'Angelo E, Ros E (2013) Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Front. Neural Circuits 7:159:1-20 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program; MATLAB; Simulink;
Model Concept(s): Long-term Synaptic Plasticity;
Implementer(s): Garrido, Jesus A [jesus.garrido at unipv.it]; Luque, Niceto R. [nluque at ugr.es];
################################################################################
########################### - MAKEFILE FLAGS - #################################
################################################################################

CXXFLAGS += -I$(includedir) -DUSE_OPENCV

ifneq ($(external_sources),none)
 CXXFLAGS += `pkg-config --cflags ${external_sources}`
endif

ifneq ($(external_libraries),none)
 CXXFLAGS += `pkg-config --cflags ${external_libraries}`
 LDFLAGS  += `pkg-config --libs ${external_libraries}`
endif

ifeq ($(fortran77support),true)
 LDFLAGS += -lg2c
endif

ifeq ($(optimize),true)
  CXXFLAGS += -Wall -O3 -DHAVE_INLINE -DGSL_RANGE_CHECK_OFF
  ifeq ($(specialize),true)
     CXXFLAGS += -march=$(platform) -mfpmath=sse
  endif
else
  CXXFLAGS += -g -Wall
endif

ifeq ($(parallelize),true)
    CXXFLAGS += -fopenmp
    CPPFLAGS += -fopenmp
endif

ifeq ($(sse-iset),true)
    CXXFLAGS += -msse -msse2
    CPPFLAGS += -msse -msse2
endif

ifeq ($(multi-threading),true)
    CXXFLAGS += -lpthread
endif

ifeq ($(profile),true)
  CXXFLAGS+= -pg
  LDFLAGS+= -lprofiler
endif

ifeq ($(matlabsupport),true)
  CXXFLAGS	+= -I$(matlabinclude) -fPIC -ansi -pthread -DMATLAB_MEX_FILE
  MEXFLAGS	+= -cxx CC='$(compiler)' CXX='$(compiler)' LD='$(compiler)'
  LDFLAGS	+= 
endif

ifeq ($(simulinksupport),true)
  CXXFLAGS	+= -I$(simulinkinclude) -fPIC -ansi -pthread -DMATLAB_MEX_FILE
  MEXFLAGS	+= -cxx CC='$(compiler)' CXX='$(compiler)' LD='$(compiler)'
  LDFLAGS	+= 
endif

CXXFLAGS += -fno-strict-aliasing

ARFLAGS = ruv
CTAGFLAGS := -e -R --languages=c++,c


Loading data, please wait...