L5 pyr. cell spiking control by oscillatory inhibition in distal apical dendrites (Li et al 2013)

 Download zip file 
Help downloading and running models
This model examined how distal oscillatory inhibition influences the firing of a biophysically-detailed layer 5 pyramidal neuron model.
1 . Li X, Morita K, Robinson HP, Small M (2013) Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. J Neurophysiol 109:2739-56 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I K,Ca; I Na, leak;
Gap Junctions:
Receptor(s): AMPA;
Transmitter(s): Dopamine;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Intrinsic plasticity;
Implementer(s): Moradi, Keivan [k.moradi at gmail.com]; Robinson, H.P.C. [hpcr at cam.ac.uk]; Small, Michael ; Li, Xiumin ;
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; AMPA; I K,Ca; I Na, leak; Dopamine;
function Mccum_Gaussian
global delta_2

% global amp
% amp=0.3;
% a code to make cumulative distribution functions for RS and FS based on
%%%%%%%%%% create cumulative distribution functions for RS and FS
%%%%%%%%%% %%%%%%%%%%
pp_cumulative_FS = Mccum_main(2,1/50);
FS_spline = pp_cumulative_FS; % re-naming
%%%%%%%%%% create spline representation of the inverse function of the cumulative distribution functions %%%%%%%%%%
tmpx = [0:0.001:1];
tmpyFS = ppval(FS_spline,tmpx);
FS_inv_spline = spline(tmpyFS,tmpx);
save(['GABAspline_Gaussian_delta2' '_' num2str(delta_2) '.mat'], 'FS_inv_spline');
% save(['GABAspline_Sin_amp' '_' num2str(amp) '.mat'], 'FS_inv_spline');
%%%%%%%%%% inner-file functions %%%%%%%%%%

function pp_cumulative = Mccum_main(RSorFS,filtersigma)
global delta_2
% global amp
sampleinterval = 0.001;
x = [0:sampleinterval:1];
% plot to check
if 1
%     y = GABA_density(0,delta_2,x);
% %     y = GABA_density_sin(amp,x);
%     F_density = figure;
%     A_density = axes;
%     hold on;
%     tmp = plot([0:sampleinterval:2],[y(1:end-1) y],'k'); set(tmp,'LineWidth',1); % after filtering and spline
% %     axis([0 2 0 0.9]);
%     set(A_density,'Box','on');
%     set(A_density,'XTick',[0:0.5:2]);
%     set(A_density,'YTick',[0:0.2:0.9]);

%%% making cumulative distribution function by integrating the above probability density

% numerical integration
tmp = zeros(1,length(x));
for j = 1:length(x)
    fprintf('I''m now numerically integrating at %d\n',j);
    tmp(j) = quad(@evalspline, 0, x(j), 1.0e-8); % numerically integrate 'evalspline' with the 2nd input variable 'pp_density_wonorm' (NB: 'pp_density_wonorm' should be 6th input of 'quad')
y_cumulative = tmp / tmp(end); % division by 'tmp(end)' is for normalization to have a value 1 at the end.
% NB: The above 'y_cumulative' on the below 'x' is a final fitting (but before spline) of the cumulative distribution
pp_cumulative = spline(x,y_cumulative); % make a spline approximation of the density function 'y_cumulative on x'
% so now the function 'ppval(pp_cumulative,x)', or equivalently, 'evalspline(x,pp_cumulative)' gives the ultimately final splined version of the cumulative distribution function

% plot to check
if 1
%     z = ppval(pp_cumulative,x);
%     F_cumulative = figure;
%     A_cumulative = axes;
%     hold on;
%     tmp = plot([0:sampleinterval:2],[z(1:end-1) 1+z],'k'); set(tmp,'LineWidth',1); % plot repeats to check the smoothness of the connection
% %     axis([0 2 0 2]);
%     set(A_cumulative,'Box','on');
% %     set(A_cumulative,'XTick',[0:0.5:2]);
% %     set(A_cumulative,'YTick',[0:0.5:2]);

function y = evalspline(x)
global delta_2
% global amp
y = GABA_density(0,delta_2,x);
% y = GABA_density_sin(amp,x);

Loading data, please wait...