Sympathetic Preganglionic Neurone (Briant et al. 2014)

 Download zip file 
Help downloading and running models
Accession:151482
A model of a sympathetic preganglionic neurone of muscle vasoconstrictor-type.
Reference:
1 . Briant LJ, Stalbovskiy AO, Nolan MF, Champneys AR, Pickering AE (2014) Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats. J Neurophysiol 112:2756-78 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Spinal cord lumbar motor neuron alpha ACh cell; Spinal cord sympathetic preganglionic neuron;
Channel(s): I Na,t; I L high threshold; I N; I A; I K; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Action Potential Initiation; Activity Patterns; Bursting; Ion Channel Kinetics; Temporal Pattern Generation; Parameter Fitting; Action Potentials; Parameter sensitivity;
Implementer(s):
Search NeuronDB for information about:  Spinal cord lumbar motor neuron alpha ACh cell; I Na,t; I L high threshold; I N; I A; I K; I K,Ca; I_AHP;
/
SPN_ModelDB
hoc_code
MATLAB_code
README.txt
borgka.mod
borgkdr.mod
cadifus2.mod
cagk.mod *
cal2.mod *
can2.mod
gap.mod
gapcalcium.mod
kadist.mod *
kahp.mod *
kaprox.mod *
na3.mod
ActivationProtocol_GKA.dat
ActivationProtocol_IA.dat
ActivationProtocol_V.dat
Cell.hoc
ClampFiddy.dat
ClampFiddy_vhalfm.dat
ClampFiddy_ZetaK.dat
ClampFiddy_ZetaM.dat
ClampHundred.dat
ClampHundred_vhalfm.dat
ClampHundred_ZetaK.dat
ClampHundred_ZetaM.dat
CurrentMagnitude_GKA.dat
CurrentMagnitude_IA.dat
CurrentMagnitude_V.dat
EPSCs_Filtered.txt
InactivationProtocol_GKA.dat
InactivationProtocol_IA.dat
InactivationProtocol_V.dat
init.hoc
mosinit.hoc *
                            
TITLE Borg-Graham type generic K-DR channel
: INACTIVATING

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek		 (mV)
	celsius		(degC)
	gkdrbar=.003 (mho/cm2)
        vhalfn=-32   (mV)
        vhalfl=-61   (mV)
        a0l=0.001      (/ms)
        a0n=0.03      (/ms)
        zetan=-5    (1)
        zetal=2    (1)
        gmn=0.4   (1)
        gml=1.0   (1)
		taunscale=1 (1)
		pert=0	(mV)
}


NEURON {
	SUFFIX borgkdr
	USEION k READ ek WRITE ik
        RANGE gkdrbar,gkdr,pert
        GLOBAL ninf,linf,taun,taul
}

STATE {
	n
        l
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf      
        gkdr
        taun
        taul
}

INITIAL {
        rates(v)
        n=ninf
        l=linf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gkdrbar*n^3*l
	ik = gkdr*(v-ek)

}

FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn+pert)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn+pert)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl+pert)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl+pert)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {  
        rates(v)
        n' = (ninf - n)/taun
        l' = (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,q10
        q10=3^((celsius-30)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = taunscale*betn(v)/(q10*a0n*(1+a))
        a = alpl(v)
        linf = 1/(1+a)
        taul = betl(v)/(q10*a0l*(1 + a))
}








Loading data, please wait...