Sympathetic Preganglionic Neurone (Briant et al. 2014)

 Download zip file 
Help downloading and running models
Accession:151482
A model of a sympathetic preganglionic neurone of muscle vasoconstrictor-type.
Reference:
1 . Briant LJ, Stalbovskiy AO, Nolan MF, Champneys AR, Pickering AE (2014) Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats. J Neurophysiol 112:2756-78 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Spinal cord lumbar motor neuron alpha ACh cell; Spinal cord sympathetic preganglionic neuron;
Channel(s): I Na,t; I L high threshold; I N; I A; I K; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Action Potential Initiation; Activity Patterns; Bursting; Ion Channel Kinetics; Temporal Pattern Generation; Parameter Fitting; Action Potentials; Parameter sensitivity;
Implementer(s):
Search NeuronDB for information about:  Spinal cord lumbar motor neuron alpha ACh cell; I Na,t; I L high threshold; I N; I A; I K; I K,Ca; I_AHP;
/
SPN_ModelDB
hoc_code
MATLAB_code
README.txt
borgka.mod
borgkdr.mod
cadifus2.mod
cagk.mod *
cal2.mod *
can2.mod
gap.mod
gapcalcium.mod
kadist.mod *
kahp.mod *
kaprox.mod *
na3.mod
ActivationProtocol_GKA.dat
ActivationProtocol_IA.dat
ActivationProtocol_V.dat
Cell.hoc
ClampFiddy.dat
ClampFiddy_vhalfm.dat
ClampFiddy_ZetaK.dat
ClampFiddy_ZetaM.dat
ClampHundred.dat
ClampHundred_vhalfm.dat
ClampHundred_ZetaK.dat
ClampHundred_ZetaM.dat
CurrentMagnitude_GKA.dat
CurrentMagnitude_IA.dat
CurrentMagnitude_V.dat
EPSCs_Filtered.txt
InactivationProtocol_GKA.dat
InactivationProtocol_IA.dat
InactivationProtocol_V.dat
init.hoc
mosinit.hoc *
                            
TITLE CaGk
: Calcium activated K channel.
: Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82

UNITS {
	(molar) = (1/liter)
}

UNITS {
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)
}


NEURON {
	SUFFIX cagk
	USEION ca READ cai
	USEION k READ ek WRITE ik
	RANGE gkbar,gkca
	GLOBAL oinf, tau
}

UNITS {
	FARADAY = (faraday)  (kilocoulombs)
	R = 8.313424 (joule/degC)
}

PARAMETER {
	celsius		(degC)
	v		(mV)
	gkbar=.01	(mho/cm2)	: Maximum Permeability
	cai = 5.e-5	(mM)
	ek		(mV)

	d1 = .84
	d2 = 1.
	k1 = .48e-3	(mM)
	k2 = .13e-6	(mM)
	abar = .28	(/ms)
	bbar = .48	(/ms)
        st=1            (1)
}

ASSIGNED {
	ik		(mA/cm2)
	oinf
	tau		(ms)
        gkca          (mho/cm2)
}

INITIAL {
        rate(v,cai)
        o=oinf
}

STATE {	o }		: fraction of open channels

BREAKPOINT {
	SOLVE state METHOD cnexp
	gkca = gkbar*o^st
	ik = gkca*(v - ek)
}

DERIVATIVE state {	: exact when v held constant; integrates over dt step
	rate(v, cai)
	o' = (oinf - o)/tau
}

FUNCTION alp(v (mV), c (mM)) (1/ms) { :callable from hoc
	alp = c*abar/(c + exp1(k1,d1,v))
}

FUNCTION bet(v (mV), c (mM)) (1/ms) { :callable from hoc
	bet = bbar/(1 + c/exp1(k2,d2,v))
}

FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc
	exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))
}

PROCEDURE rate(v (mV), c (mM)) { :callable from hoc
	LOCAL a
	a = alp(v,c)
	tau = 1/(a + bet(v, c))
	oinf = a*tau
}


Loading data, please wait...