Spine head calcium in a CA1 pyramidal cell model (Graham et al. 2014)

 Download zip file 
Help downloading and running models
Accession:154732
"We use a computational model of a hippocampal CA1 pyramidal cell to demonstrate that spine head calcium provides an instantaneous readout at each synapse of the postsynaptic weighted sum of all presynaptic activity impinging on the cell. The form of the readout is equivalent to the functions of weighted, summed inputs used in neural network learning rules. Within a dendritic layer, peak spine head calcium levels are either a linear or sigmoidal function of the number of coactive synapses, with nonlinearity depending on the ability of voltage spread in the dendrites to reach calcium spike threshold. ..."
Reference:
1 . Graham BP, Saudargiene A, Cobb S (2014) Spine head calcium as a measure of summed postsynaptic activity for driving synaptic plasticity. Neural Comput 26:2194-222 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration;
Implementer(s): Graham, Bruce [B.Graham at cs.stir.ac.uk];
/
GrahamEtAl2014
Cells
Results
readme.html
burststim2.mod *
cad.mod
cagk.mod
carF.mod
distca.mod
distr.mod *
h.mod *
kadist.mod *
kaprox.mod *
kca.mod *
kdrca1.mod *
km.mod
na3n.mod *
naxn.mod *
nmdaca.mod *
burst_cell.hoc *
CA1PC.hoc
mosinit.hoc
randomlocation.hoc
ranstream.hoc *
run_batsyn.hoc
run_PC.hoc
screenshot1.png
screenshot2.png
screenshot3.png
setup_PC.hoc
synstim.ses
                            
TITLE nax
: Na current for axon. No slow inact.
: M.Migliore Jul. 1997
: added sh to account for higher threshold M.Migliore, Apr.2002

NEURON {
	SUFFIX nax
	USEION na READ ena WRITE ina
	RANGE  gbar, sh
	GLOBAL minf, hinf, mtau, htau,thinf, qinf
}

PARAMETER {
	sh   = 0	(mV)
	gbar = 0.010   	(mho/cm2)	
								
	tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.2	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	thi1  = -45	(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact 	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
	mmin=0.02	
	hmin=0.5			
	q10=2
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	

	thinf  = -50 	(mV)		: inact inf slope	
	qinf  = 4 	(mV)		: inact inf slope 

	ena		(mV)            : must be explicitly def. in hoc
	celsius
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h
	ina = thegna * (v - ena)
} 

INITIAL {
	trates(v,sh)
	m=minf  
	h=hinf
}

DERIVATIVE states {   
        trates(v,sh)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(vm,sh2) {  
        LOCAL  a, b, qt
        qt=q10^((celsius-24)/10)
	a = trap0(vm,tha+sh2,Ra,qa)
	b = trap0(-vm,-tha-sh2,Rb,qa)
	mtau = 1/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
	minf = a/(a+b)

	a = trap0(vm,thi1+sh2,Rd,qd)
	b = trap0(-vm,-thi2-sh2,Rg,qg)
	htau =  1/(a+b)/qt
        if (htau<hmin) {htau=hmin}
	hinf = 1/(1+exp((vm-thinf-sh2)/qinf))
}

FUNCTION trap0(v,th,a,q) {
	if (fabs(v-th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}	

        


Loading data, please wait...