Firing neocortical layer V pyramidal neuron (Reetz et al. 2014; Stadler et al. 2014)

 Download zip file 
Help downloading and running models
Accession:168148
Neocortical Layer V model with firing behaviour adjusted to in vitro observations. The model was used to investigate the effects of IFN and PKC on the excitability of neurons (Stadler et al 2014, Reetz et al. 2014). The model contains new channel simulations for HCN1, HCN2 and the big calcium dependent potassium channel BK.
References:
1 . Stadler K, Bierwirth C, Stoenica L, Battefeld A, Reetz O, Mix E, Schuchmann S, Velmans T, Rosenberger K, Bräuer AU, Lehnardt S, Nitsch R, Budt M, Wolff T, Kole MH, Strauss U (2014) Elevation in type I interferons inhibits HCN1 and slows cortical neuronal oscillations. Cereb Cortex 24:199-210 [PubMed]
2 . Reetz O, Stadler K, Strauss U (2014) Protein kinase C activation mediates interferon-ß-induced neuronal excitability changes in neocortical pyramidal neurons. J Neuroinflammation 11:185 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Mixed; I Potassium; I Q;
Gap Junctions:
Receptor(s):
Gene(s): HCN1; HCN2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Detailed Neuronal Models; Action Potentials; Signaling pathways;
Implementer(s): Stadler, Konstantin [konstantin.stadler at ntnu.no];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Mixed; I Potassium; I Q;
/
stadler2014_layerV
geo
sub
readme.html
readme_alt_format.html
ca.mod
cad.mod
caT.mod
HCN1r.mod
HCN2r.mod
kadist.mod
kaprox.mod
kBK.mod
kca.mod
km.mod
kv.mod *
na.mod *
Nap.mod
nax.mod *
syn.mod *
LayerVinit.hoc
LayerVrun.hoc
mosinit.hoc
screenshot1.png
screenshot2.png
                            
COMMENT
26 Ago 2002 Modification of original channel to allow variable time step and to correct an initialization error.
    Done by Michael Hines(michael.hines@yale.e) and Ruggero Scorcioni(rscorcio@gmu.edu) at EU Advance Course in Computational Neuroscience. Obidos, Portugal

ca.mod
Uses fixed eca instead of GHK eqn

HVA Ca current
Based on Reuveni, Friedman, Amitai and Gutnick (1993) J. Neurosci. 13:
4609-4621.

Author: Zach Mainen, Salk Institute, 1994, zach@salk.edu

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX ca
	USEION ca READ eca WRITE ica
	RANGE m, h, gca, gbar
	RANGE minf, hinf, mtau, htau
	GLOBAL q10, temp, tadj, vmin, vmax, vshift
}

PARAMETER {
	gbar = 0.1   	(pS/um2)	: 0.12 mho/cm2
	vshift = 0	(mV)		: voltage shift (affects all)

	cao  = 2.5	(mM)	        : external ca concentration
	cai		(mM)
						
	temp = 23	(degC)		: original temp 
	q10  = 2.3			: temperature sensitivity

	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
	(molar) = (1/liter)
	(mM) 	= (millimolar)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
	PI	= (pi) (1)
} 

ASSIGNED {
	ica 		(mA/cm2)
	gca		(pS/um2)
	eca		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}
 

STATE { m h }

INITIAL { 
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
        SOLVE states METHOD cnexp
        gca = tadj*gbar*m*m*h
	ica = (1e-4) * gca * (v - eca)
} 

LOCAL mexp, hexp

:PROCEDURE states() {
:        trates(v+vshift)      
:        m = m + mexp*(minf-m)
:        h = h + hexp*(hinf-h)
:	VERBATIM
:	return 0;
:	ENDVERBATIM
:}

DERIVATIVE states {
        trates(v+vshift)      
        m' =  (minf-m)/mtau
        h' =  (hinf-h)/htau
}

PROCEDURE trates(v) {  
                      
        
        TABLE minf, hinf, mtau, htau 
	DEPEND  celsius, temp
	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable == 1

:        tinc = -dt * tadj

:        mexp = 1 - exp(tinc/mtau)
:        hexp = 1 - exp(tinc/htau)
}


PROCEDURE rates(vm) {  
        LOCAL  a, b

        tadj = q10^((celsius - temp)/10)

	a = 0.055*(-27 - vm)/(exp((-27-vm)/3.8) - 1)
	b = 0.94*exp((-75-vm)/17)
	
	mtau = 1/tadj/(a+b)
	minf = a/(a+b)

		:"h" inactivation 

	a = 0.000457*exp((-13-vm)/50)
	b = 0.0065/(exp((-vm-15)/28) + 1)

	htau = 1/tadj/(a+b)
	hinf = a/(a+b)
}

FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}

Loading data, please wait...