Neuronal variability in sensory cortex predicts perceptual decisions. To investigate the interaction of bottom-up and top-down mechanisms during the decision process, we developed a hierarchical network model. The network consists of two circuits composed of leaky integrate-and-fire neurons: an integration circuit (e.g. LIP, FEF) and a sensory circuit (MT), recurrently coupled via bottom-up feedforward connections and top-down feedback connections. The integration circuit accumulates sensory evidence and produces a binary categorization due to winner-take-all competition between two decision-encoding populations (X.J. Wang, Neuron, 2002). The sensory circuit is a balanced randomly connected EI-network, that contains neural populations selective to opposite directions of motion. We have used this model to simulate a standard two-alternative forced-choice motion discrimination task.
Reference:
1 .
Wimmer K, Compte A, Roxin A, Peixoto D, Renart A, de la Rocha J (2015) Sensory integration dynamics in a hierarchical network explains choice probabilities in cortical area MT. Nat Commun 6:6177 [PubMed]
|