Striatal NN model of MSNs and FSIs investigated effects of dopamine depletion (Damodaran et al 2015)

 Download zip file 
Help downloading and running models
Accession:169984
This study investigates the mechanisms that are affected in the striatal network after dopamine depletion and identifies potential therapeutic targets to restore normal activity.
Reference:
1 . Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT (2015) Desynchronization of fast-spiking interneurons reduces ß-band oscillations and imbalance in firing in the dopamine-depleted striatum. J Neurosci 35:1149-59 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Axon; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; Neostriatum fast spiking interneuron;
Channel(s): I Sodium; I Potassium; Kir;
Gap Junctions: Gap junctions;
Receptor(s): D1; D2; GabaA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Synchronization; Detailed Neuronal Models; Parkinson's;
Implementer(s): Damodaran, Sriraman [dsriraman at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; D1; D2; GabaA; Glutamate; I Sodium; I Potassium; Kir; Gaba; Glutamate;
/
DamodaranEtAl2015
Analysis
Correlogram.py
ps_full.py
                            
import numpy as np
import os
import glob

files = glob.glob("/Analysis/MSN_noDA_06_5hz.txt")
temp=range(101)
ps_y_cntl = [0]*max(temp)
count = 0
for i, file in enumerate(files):
	count = count +1
	with open(file) as f:
		data=map(float,f)
	ps=np.abs(np.fft.fft(data))**2
	freqs=np.fft.fftfreq(len(data),0.001)
	idx=np.argsort(freqs)
	for j in idx:
		for k in range(100):
			if (freqs[idx[j]]>(k-1) and freqs[idx[j]]<(k+1)):	
				if i == 0:
					print k
					ps_y_cntl[k] = ps[idx[j]]
					print ps_y_cntl[k]
				else:
					ps_y_cntl[k] += ps[idx[j]]
					print ps_y_cntl[k]

print count
np.savetxt("/Analysis/ps_MSN_cntl_01_5hz_2s_04cut.txt",ps_y_cntl)



Loading data, please wait...