CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)

 Download zip file   Auto-launch 
Help downloading and running models
This model simulates the effects of dendritic sodium spikes initiated in distal apical dendrites on the voltage and the calcium dynamics revealed by calcium imaging. It shows that dendritic sodium spike promotes large and transient calcium influxes via NMDA receptor and L-type voltage-gated calcium channels, which contribute to the induction of LTP at distal synapses.
1 . Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N (2015) Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I L high threshold; I K; Ca pump; I Sodium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Ion Channel Kinetics; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Synaptic Integration; Calcium dynamics; Conductance distributions;
Implementer(s): Cembrowski, Mark S [cembrowskim at]; Hsu, Ching-Lung [hsuc at];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I L high threshold; I K; I Sodium; Ca pump; Glutamate;
kad.mod *
kap.mod *
kdr.mod *
na3.mod *
morphology_ri06.nrn *
naceaxon.nrn *
resetNSeg.hoc *

Author: Ching-Lung Hsu (adapted from Hines and Carnevale, 2000)

Calcium ion handling mechanisms with endogenous buffer, radial & longitudinal diffusion and pump
A mobile calcium indicator OGB-1 is included


  SUFFIX cdp
  USEION ca READ cao, cai, ica WRITE cai, ica
  RANGE ica_pmp
  GLOBAL vrat, TotalBuffer, TotalPump 
  GLOBAL TotalIndicator
    : vrat must be GLOBAL--see INITIAL block
    : however TotalBuffer and TotalPump may be RANGE

DEFINE Nannuli 4

  (mol)   = (1)
  (molar) = (1/liter)
  (mM)    = (millimolar)
  (um)    = (micron)
  (mA)    = (milliamp)
  FARADAY = (faraday)  (10000 coulomb)
  PI      = (pi)       (1)

  DCa   = 0.6 (um2/ms)
  k1buf = 100 (/mM-ms) : Yamada et al. 1989 : forward rate        : Kd = 1/KD = k1/k2
  k2buf = 0.1 (/ms) : backward rate
  TotalBuffer = 0.003  (mM)
  Dogb = 0.3 (um2/ms) : smaller than DCa (Schmidt et al., 2003; Cornelisse et al., 2007)
                      : An unexpected syntax error -
                      : Don't use "DIndicator" as the parameter name for indicator's diffusion constant.
                      : Because after cdp.mod is compiled into cdp.c, the C code will automatically use DIndicator
                      : as an array whenever the state variable Indicator is involved in any REACTION
                      : (including the radial diffusion and the calcium-indicator binding reaction);
                      : otherwise, the following error message will show up in the shell:
                      : "cdp.c: In fuction _ode_specl:
                      :  error: subscripted value is neither array nor pointer"
  k1ind = 430 (/mM-ms)      : Schmidt et al. (2003)
  k2ind = 0.14 (/ms)        : Schmidt et al. (2003)
  TotalIndicator = 0.05 (mM) : take 50% of the pipette concentration as the effective concentration at equilibrium 

  k1    = 1       (/mM-ms)
  k2    = 0.005   (/ms)
  k3    = 1       (/ms)
  k4    = 0.005   (/mM-ms)
  : to eliminate pump, set TotalPump to 0 in hoc
  TotalPump = 1e-11 (mol/cm2)

  diam      (um)
  ica       (mA/cm2)
  ica_pmp   (mA/cm2)
  ica_pmp_last   (mA/cm2)
  parea     (um)     : pump area per unit length
  cai       (mM)
  cao       (mM)
  vrat[Nannuli]  (1) : dimensionless
                     : numeric value of vrat[i] equals the volume 
                     : of annulus i of a 1um diameter cylinder
                     : multiply by diam^2 to get volume per um length
  Kd        (/mM)
  B0        (mM)
  Kd_ind    (/mM)    : Ching-Lung
  B0_ind    (mM)     :

CONSTANT { volo = 1e10 (um2) }

  : ca[0] is equivalent to cai
  : ca[] are very small, so specify absolute tolerance
  : let it be ~1.5 - 2 orders of magnitude smaller than baseline level
  ca[Nannuli]       (mM) <1e-7>
  CaBuffer[Nannuli] (mM) <1e-5>
  Buffer[Nannuli]   (mM) <1e-5>

  CaIndicator[Nannuli] (mM) <1e-5> :
  Indicator[Nannuli]   (mM) <1e-5> :
  pump              (mol/cm2) <1e-15>
  pumpca            (mol/cm2) <1e-15>

  SOLVE state METHOD sparse
  ica_pmp_last = ica_pmp
  ica = ica_pmp

LOCAL factors_done

   if (factors_done == 0) {  : flag becomes 1 in the first segment
      factors_done = 1       :   all subsequent segments will have
      factors()              :   vrat = 0 unless vrat is GLOBAL

  Kd = k1buf/k2buf
  B0 = TotalBuffer/(1 + Kd*cai)
  Kd_ind = k1ind/k2ind                      
  B0_ind = TotalIndicator/(1 + Kd_ind*cai)

  FROM i=0 TO Nannuli-1 {
    ca[i] = cai
    Buffer[i] = B0
    CaBuffer[i] = TotalBuffer - B0
    Indicator[i] = B0_ind                       
    CaIndicator[i] = TotalIndicator - B0_ind

  parea = PI*diam

: Manually computed initalization of pump
: assumes that cai has been equal to cai0_ca_ion for a long time
  pump = TotalPump/(1 + (cai*k1/k2))   : a better initialization
  pumpca = TotalPump - pump            
: If possible, instead of using formulas to calculate pump and pumpca,
: let NEURON figure them out--just uncomment the following four statements
  ica_pmp = 0
  ica_pmp_last = 0
  SOLVE state STEADYSTATE sparse
: This requires that pump and pumpca be constrained by the CONSERVE
: statement in the STATE block.

As suggested by Ted Carnevale,  
the initialization style below may work best

  pump = TotalPump/(1 + (cai*k1/k2))
  pumpca = TotalPump - pump
  SOLVE state STEADYSTATE sparse

LOCAL frat[Nannuli]  : scales the rate constants for model geometry
PROCEDURE factors() {
  LOCAL r, dr2
  r = 1/2                : starts at edge (half diam)
  dr2 = r/(Nannuli-1)/2  : full thickness of outermost annulus,
                         : half thickness of all other annuli
  vrat[0] = 0
  frat[0] = 2*r
  FROM i=0 TO Nannuli-2 {
    vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2  : interior half
    r = r - dr2
    frat[i+1] = 2*PI*r/(2*dr2)  : outer radius of annulus
                                : div by distance between centers
    r = r - dr2
    vrat[i+1] = PI*(r+dr2/2)*2*dr2  : outer half of annulus

LOCAL dsq, dsqvol  : can't define local variable in KINETIC block
                   :   or use in COMPARTMENT statement

KINETIC state {
  : COMPARTMENT i, diam*diam*vrat[i] {ca CaBuffer Buffer}
  COMPARTMENT i, diam*diam*vrat[i] {ca CaBuffer Buffer CaIndicator Indicator}
  COMPARTMENT (1e10)*parea {pump pumpca}
  COMPARTMENT volo {cao}
  LONGITUDINAL_DIFFUSION i, DCa*diam*diam*vrat[i] {ca}        : Longitudinal diffusion of free Ca
                                                              : Longitudinal diffusion of the Indicator,
                                                              : assuming CaIndicator and Indicator have the same mobility
  LONGITUDINAL_DIFFUSION i, Dogb*diam*diam*vrat[i] {CaIndicator Indicator}

  :pump                                                       : a calcium sink
  ~ ca[0] + pump <-> pumpca  (k1*parea*(1e10), k2*parea*(1e10)) : Nannuli = 0 is the outermost annulus
  ~ pumpca <-> pump + cao    (k3*parea*(1e10), k4*parea*(1e10))
  CONSERVE pump + pumpca = TotalPump * parea * (1e10)
  ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea

  : all currents except pump
  : ica is Ca efflux
  ~ ca[0] << (-(ica - ica_pmp_last)*PI*diam/(2*FARADAY))       : calcium source
  FROM i=0 TO Nannuli-2 {                                      : Radial diffusion of free Ca
    ~ ca[i] <-> ca[i+1]  (DCa*frat[i+1], DCa*frat[i+1])        
    ~ Indicator[i] <-> Indicator[i+1]  (Dogb*frat[i+1], Dogb*frat[i+1])      : Radial diffusion of the Indicator,
    ~ CaIndicator[i] <-> CaIndicator[i+1]  (Dogb*frat[i+1], Dogb*frat[i+1])  : assuming CaIndicator and Indicator have the same mobility
  dsq = diam*diam                                              : calcium buffering
  FROM i=0 TO Nannuli-1 {
    dsqvol = dsq*vrat[i]
    ~ ca[i] + Buffer[i] <-> CaBuffer[i]  (k1buf*dsqvol, k2buf*dsqvol)
    ~ ca[i] + Indicator[i] <-> CaIndicator[i]  (k1ind*dsqvol, k2ind*dsqvol)
  cai = ca[0]

Loading data, please wait...