ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/187615.

Pleiotropic effects of SCZ-associated genes (Mäki-Marttunen et al. 2017)

 Download zip file 
Help downloading and running models
Accession:187615
Python and MATLAB scripts for studying the dual effects of SCZ-related genes on layer 5 pyramidal cell firing and sinoatrial node cell pacemaking properties. The study is based on two L5PC models (Hay et al. 2011, Almog & Korngreen 2014) and SANC models (Kharche et al. 2011, Severi et al. 2012).
Reference:
1 . Mäki-Marttunen T, Lines GT, Edwards AG, Tveito A, Dale AM, Einevoll GT, Andreassen OA (2017) Pleiotropic effects of schizophrenia-associated genetic variants in neuron firing and cardiac pacemaking revealed by computational modeling. Transl Psychiatry 7:5 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Cardiac atrial cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I A, slow; Na/Ca exchanger; I_SERCA; Na/K pump; Kir;
Gap Junctions:
Receptor(s):
Gene(s): Nav1.1 SCN1A; Cav3.3 CACNA1I; Cav1.3 CACNA1D; Cav1.2 CACNA1C;
Transmitter(s):
Simulation Environment: NEURON; MATLAB; Python;
Model Concept(s): Schizophrenia;
Implementer(s): Maki-Marttunen, Tuomo [tuomomm at uio.no];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Sodium; I Calcium; I Potassium; I A, slow; Na/Ca exchanger; I_SERCA; Na/K pump; Kir;
/
pleiotropy
hay
models
morphologies
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
SK_E2.mod *
SKv3_1.mod *
calcifcurves.py
calcsteadystate.py
collectfig1.py
collectfig2.py
fig1_curves.mat
fig2_curves.mat
findDCshortthreshold.py
mutation_stuff.py *
mytools.py *
runme.sh *
scalings_cs.sav
                            
: Dynamics that track inside calcium concentration
: modified from Destexhe et al. 1994

NEURON	{
	SUFFIX CaDynamics_E2
	USEION ca READ ica WRITE cai
	RANGE decay, gamma, minCai, depth
}

UNITS	{
	(mV) = (millivolt)
	(mA) = (milliamp)
	FARADAY = (faraday) (coulombs)
	(molar) = (1/liter)
	(mM) = (millimolar)
	(um)	= (micron)
}

PARAMETER	{
	gamma = 0.05 : percent of free calcium (not buffered)
	decay = 80 (ms) : rate of removal of calcium
	depth = 0.1 (um) : depth of shell
	minCai = 1e-4 (mM)
}

ASSIGNED	{ica (mA/cm2)}

STATE	{
	cai (mM)
	}

BREAKPOINT	{ SOLVE states METHOD cnexp }

DERIVATIVE states	{
	cai' = -(10000.0)*(ica*gamma/(2*FARADAY*depth)) - (cai - minCai)/decay
}

Loading data, please wait...