Striatal Spiny Projection Neuron (SPN) plasticity rule (Jedrzejewska-Szmek et al 2016)

 Download zip file 
Help downloading and running models
Accession:189153

Reference:
1 . Jedrzejewska-Szmek J, Damodaran S, Dorman DB, Blackwell KT (2017) Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons. Eur J Neurosci 45:1044-1056 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Calcium dynamics; Synaptic Plasticity;
Implementer(s): Jedrzejewska-Szmek, Joanna ; Damodaran, Sriraman ; Dorman, Daniel B ; Blackwell, Avrama [avrama at gmu.edu];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; Glutamate;
/
SP12
MScell
channels
BK.g *
CaL12CDI.g
CaL13CDI.g
CaNCDI.g *
CaRCDI.g
CaT.g *
CDI-GHK.g
chanplot.g *
chantest.g
GABA_tonic.g *
KaF.g *
KaFnew.g *
KaS.g
Kir.g *
Krp.g
NaF.g *
NaFslowinact.g *
nmda_channel.g
SK.g *
synaptic_channel.g
tabchanforms.g *
                            
//genesis

/***************************MS Model, Version 9.1	*********************
****************************   NaF.g 	*********************
updated Rebekah Evans 3/22/12					
******************************************************************************
******************************************************************************/

//**ref: Nobukuni Ogata, et.al. 1990


function make_NaF_channel
float Erev       = 0.05      // V

    
    str path = "NaF_channel" 

    float xmin  = -0.10  /* minimum voltage we will see in the simulation */     // V
    float xmax  = 0.05  /* maximum voltage we will see in the simulation */      // V
    int xdivsFiner = 3000
    int c = 0
   float increment = (xmax - xmin)*1e3/xdivsFiner  // mV


//Inactivation constants for alphas and betas
//units are mV, ms
	
	//mtau fits ogata figure 5 perfectly, but no qfactor is applied.  
    float mtau_min=0.1
	float mtau_rate = 1.45
	float mtau_slope = 8
    float mtau_vhalf=-62
	
	
	//activation minf fits Ogata 1990 figure 3C (which is cubed root) 
	float mss_rate = 1
	float mss_vhalf = -25
	float mss_slope = -10

	//htau fits the main -50 through -10 slope of Ogata figure 9 (log tau), but a qfact of 2 is already taken into account.  
	
    float htau_min=0.2754
	float htau_rate = 1.2
	float htau_slope = 3
    float htau_vhalf=-42
	
	//inactivation hinf fits Ogata 1990 figure 6B
	float hss_rate = 1
	float hss_vhalf = -60
	float hss_slope = 6
	    
 	 /****** End vars used to enable genesis calculations **********/ 	 

 	  
    create tabchannel {path} 
    call {path} TABCREATE X {xdivsFiner} {xmin} {xmax}  // activation   gate
    call {path} TABCREATE Y {xdivsFiner} {xmin} {xmax}  // inactivation gate

   float x = -100.00             // mV

   echo "Make naF, qfactor=" {qfactorNaF}

 for(c = 0; c < {xdivsFiner} + 1; c = c + 1) 

        float m_ss = {sig_form {mss_rate} {mss_vhalf} {mss_slope} {x}}
        float m_tau = {mtau_min} + {sig_form {mtau_rate} {mtau_vhalf} {mtau_slope} {x}}*{sig_form {mtau_rate} {mtau_vhalf} {-mtau_slope} {x}}
        float h_ss = {sig_form {hss_rate} {hss_vhalf} {hss_slope} {x}}
        float h_tau = {htau_min} + {sig_form {htau_rate} {htau_vhalf} {htau_slope} {x}}
   /* 1e-3 converts from ms to sec */		

	    setfield {path} X_A->table[{c}] {1e-3*{m_tau}/{qfactorNaF}}
        setfield {path} X_B->table[{c}] {m_ss}
	    setfield {path} Y_A->table[{c}] {2e-3*{h_tau}/{qfactorNaF}}  //qfact of 2 taken into account in original fit.  
        setfield {path} Y_B->table[{c}] {h_ss}

		x = x + increment
    end


/* Defines the powers of m Hodgkin-Huxley equation*/
    setfield {path} Ek {Erev} Xpower 3 Ypower 1

    /* fill the tables with the values of tau and minf/hinf
     * calculated from tau and minf/hinf
     */
   tweaktau {path} X
   tweaktau {path} Y   


end

Loading data, please wait...