ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/189154.

Multitarget pharmacology for Dystonia in M1 (Neymotin et al 2016)

 Download zip file 
Help downloading and running models
Accession:189154
" ... We developed a multiscale model of primary motor cortex, ranging from molecular, up to cellular, and network levels, containing 1715 compartmental model neurons with multiple ion channels and intracellular molecular dynamics. We wired the model based on electrophysiological data obtained from mouse motor cortex circuit mapping experiments. We used the model to reproduce patterns of heightened activity seen in dystonia by applying independent random variations in parameters to identify pathological parameter sets. ..."
Reference:
1 . Neymotin SA, Dura-Bernal S, Lakatos P, Sanger TD, Lytton WW (2016) Multitarget Multiscale Simulation for Pharmacological Treatment of Dystonia in Motor Cortex. Front Pharmacol 7:157 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Molecular Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex layer 4 neuron; Neocortex layer 2-3 interneuron; Neocortex layer 4 interneuron; Neocortex layer 5 interneuron; Neocortex layer 6a interneuron;
Channel(s): I A; I h; I_SERCA; Ca pump; I K,Ca; I Calcium; I L high threshold; I T low threshold; I N; I_KD; I M; I Na,t;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; mGluR;
Gene(s): HCN1;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Oscillations; Activity Patterns; Beta oscillations; Reaction-diffusion; Calcium dynamics; Pathophysiology; Multiscale;
Implementer(s): Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org]; Dura-Bernal, Salvador [salvadordura at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; GabaA; GabaB; AMPA; mGluR; I Na,t; I L high threshold; I N; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I_SERCA; I_KD; Ca pump; Gaba; Glutamate;
/
dystdemo
readme.txt
cagk.mod *
cal.mod *
calts.mod *
can.mod *
cat.mod *
gabab.mod
h_winograd.mod
HCN1.mod
IC.mod *
icalts.mod *
ihlts.mod *
kap.mod
kcalts.mod *
kdmc.mod
kdr.mod
km.mod *
mglur.mod *
misc.mod *
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod
nax.mod
stats.mod *
vecst.mod *
aux_fun.inc *
conf.py
declist.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.py
ghk.inc *
grvec.hoc *
init.hoc
labels.hoc *
labels.py *
local.hoc *
misc.h
mpisim.py
netcfg.cfg
nqs.hoc *
nqs.py
nrnoc.hoc *
pyinit.py *
python.hoc *
pywrap.hoc *
simctrl.hoc *
simdat.py
syn.py
syncode.hoc *
vector.py *
xgetargs.hoc *
                            
: $Id: gabab.mod,v 1.9 2004/06/17 16:04:05 billl Exp $

COMMENT
-----------------------------------------------------------------------------

	Kinetic model of GABA-B receptors
	=================================

  MODEL OF SECOND-ORDER G-PROTEIN TRANSDUCTION AND FAST K+ OPENING
  WITH COOPERATIVITY OF G-PROTEIN BINDING TO K+ CHANNEL

  PULSE OF TRANSMITTER

  SIMPLE KINETICS WITH NO DESENSITIZATION

	Features:

  	  - peak at 100 ms; time course fit to Tom Otis' PSC
	  - SUMMATION (psc is much stronger with bursts)


	Approximations:

	  - single binding site on receptor	
	  - model of alpha G-protein activation (direct) of K+ channel
	  - G-protein dynamics is second-order; simplified as follows:
		- saturating receptor
		- no desensitization
		- Michaelis-Menten of receptor for G-protein production
		- "resting" G-protein is in excess
		- Quasi-stat of intermediate enzymatic forms
	  - binding on K+ channel is fast


	Kinetic Equations:

	  dR/dt = K1 * T * (1-R-D) - K2 * R

	  dG/dt = K3 * R - K4 * G

	  R : activated receptor
	  T : transmitter
	  G : activated G-protein
	  K1,K2,K3,K4 = kinetic rate cst

  n activated G-protein bind to a K+ channel:

	n G + C <-> O		(Alpha,Beta)

  If the binding is fast, the fraction of open channels is given by:

	O = G^n / ( G^n + KD )

  where KD = Beta / Alpha is the dissociation constant

-----------------------------------------------------------------------------

  Parameters estimated from patch clamp recordings of GABAB PSP's in
  rat hippocampal slices (Otis et al, J. Physiol. 463: 391-407, 1993).

-----------------------------------------------------------------------------

  PULSE MECHANISM

  Kinetic synapse with release mechanism as a pulse.  

  Warning: for this mechanism to be equivalent to the model with diffusion 
  of transmitter, small pulses must be used...

  For a detailed model of GABAB:

  Destexhe, A. and Sejnowski, T.J.  G-protein activation kinetics and
  spill-over of GABA may account for differences between inhibitory responses
  in the hippocampus and thalamus.  Proc. Natl. Acad. Sci. USA  92:
  9515-9519, 1995.

  For a review of models of synaptic currents:

  Destexhe, A., Mainen, Z.F. and Sejnowski, T.J.  Kinetic models of 
  synaptic transmission.  In: Methods in Neuronal Modeling (2nd edition; 
  edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1996.

  This simplified model was introduced in:

  Destexhe, A., Bal, T., McCormick, D.A. and Sejnowski, T.J.
  Ionic mechanisms underlying synchronized oscillations and propagating
  waves in a model of ferret thalamic slices. Journal of Neurophysiology
  76: 2049-2070, 1996.  

  See also http://www.cnl.salk.edu/~alain



  Alain Destexhe, Salk Institute and Laval University, 1995

-----------------------------------------------------------------------------
ENDCOMMENT



INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS GABAB
	RANGE R, G, g
	NONSPECIFIC_CURRENT i
	GLOBAL Cmax, Cdur
	GLOBAL K1, K2, K3, K4, KD, Erev, warn, cutoff
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
	(mM) = (milli/liter)
}

PARAMETER {

	Cmax	= 0.5	(mM)		: max transmitter concentration
	Cdur	= 0.3	(ms)		: transmitter duration (rising phase)
:
:	From Kfit with long pulse (5ms 0.5mM)
:
	K1	= 0.52	(/ms mM)	: forward binding rate to receptor
	K2	= 0.0013 (/ms)		: backward (unbinding) rate of receptor
	K3	= 0.098 (/ms)		: rate of G-protein production
	K4	= 0.033 (/ms)		: rate of G-protein decay
	KD	= 100			: dissociation constant of K+ channel
	n	= 4			: nb of binding sites of G-protein on K+
	Erev	= -95	(mV)		: reversal potential (E_K)
	warn	= 0			: whether to warn if G too large
        cutoff = 10.0 : 1e3 : 1e12
}


ASSIGNED {
	v		(mV)		: postsynaptic voltage
	i 		(nA)		: current = g*(v - Erev)
	g 		(umho)		: conductance
	Gn
	R				: fraction of activated receptor
	edc
	synon
	Rinf
	Rtau (ms)
	Beta (/ms)
}

STATE {
	Ron Roff
	G				: fraction of activated G-protein
}


INITIAL {
	R = 0
	G = 0
	Ron = 0
	Roff = 0
	synon = 0
	Rinf = K1*Cmax/(K1*Cmax + K2)
	Rtau = 1/(K1*Cmax + K2)
	Beta = K2

}

BREAKPOINT {
	: SOLVE bindkin METHOD derivimplicit
        : SOLVE bindkin METHOD euler
        SOLVE bindkin METHOD cnexp
	if (G < cutoff) {
		Gn = G*G*G*G : ^n = 4
		g = Gn / (Gn+KD)
	} else {
		if(warn){
			printf("gabab.mod WARN: G = %g too large\n", G)		
		}
		g = 1
	}
	i = g*(v - Erev)
}


DERIVATIVE bindkin {
	Ron' = synon*K1*Cmax - (K1*Cmax + K2)*Ron
	Roff' = -K2*Roff
	R = Ron + Roff
	G' = K3 * R - K4 * G
}

: following supports both saturation from single input and
: summation from multiple inputs
: Note: automatic initialization of all reference args to 0 except first

NET_RECEIVE(weight,  r0, t0 (ms)) {
	if (flag == 1) { : at end of Cdur pulse so turn off
		r0 = weight*(Rinf + (r0 - Rinf)*exp(-(t - t0)/Rtau))
		t0 = t
		synon = synon - weight
                Ron = Ron - r0
                Roff = Roff + r0
		:state_discontinuity(Ron, Ron - r0)
		: state_discontinuity(Roff, Roff + r0)
        } else{ : at beginning of Cdur pulse so turn on
		r0 = weight*r0*exp(-Beta*(t - t0))
		t0 = t
		synon = synon + weight
                Ron = Ron + r0
                Roff = Roff - r0
		: state_discontinuity(Ron, Ron + r0)
		: state_discontinuity(Roff, Roff - r0)
		:come again in Cdur
		net_send(Cdur, 1)
        }
}

Loading data, please wait...