CA1 pyramidal neuron: as a 2-layer NN and subthreshold synaptic summation (Poirazi et al 2003)

 Download zip file 
Help downloading and running models
Accession:20212
We developed a CA1 pyramidal cell model calibrated with a broad spectrum of in vitro data. Using simultaneous dendritic and somatic recordings, and combining results for two different response measures (peak vs. mean EPSP), two different stimulus formats (single shock vs. 50 Hz trains), and two different spatial integration conditions (within vs. between-branch summation), we found the cell's subthreshold responses to paired inputs are best described as a sum of nonlinear subunit responses, where the subunits correspond to different dendritic branches. In addition to suggesting a new type of experiment and providing testable predictions, our model shows how conclusions regarding synaptic arithmetic can be influenced by an array of seemingly innocuous experimental design choices.
References:
1 . Poirazi P, Brannon T, Mel BW (2003) Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37:977-87 [PubMed]
2 . Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural network. Neuron 37:989-99 [PubMed]
3 . Poirazi P, Brannon T, Mel BW (2003ab-sup) Online Supplement: About the Model Neuron 37 Online:1-20
4 . Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7:621-7 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s): GabaA; GabaB; NMDA; Glutamate;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Activity Patterns; Dendritic Action Potentials; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Action Potentials; Depression; Delay;
Implementer(s): Poirazi, Panayiota [poirazi at imbb.forth.gr];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; GabaB; NMDA; Glutamate; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium;
/
CA1_multi
mechanism
not-currently-used
abbott.mod
abbott_nmda.mod
borgkm.mod
ca.mod
cachan.mod
cacum.mod
cad_trunk.mod
cad3.mod
cadecay.mod *
cadifusl.mod
cagk.mod
cal.mod
calH.mod
can2.mod
canKev.mod
capump.mod
cat.mod
h.mod
hh3.mod
hh3_flei.mod
hha.mod
ht.mod
ican.mod
iq.mod
it.mod
it1.mod
ITGHK.mod *
kad.mod *
kap.mod *
kc.mod
kca.mod
kdr.mod
kdr_inac.mod
kdrca1.mod
kv.mod *
My_cal.mod
My_can.mod
My_cat.mod
my_kca.mod
Myca.mod
Mykca.mod
na.mod *
na3.mod
namir.mod
nax.mod
ourca_old.mod
vkca.mod
abbott.o
abbott_nmda.c
h.pl
ITGHK.o
mod_func.c
test.hoc
test2.hoc
testh.hoc
VClamp.omod *
                            
TITLE svclmp.mod

COMMENT

Single electrode Voltage clamp with three levels
------------------------------------------------

Series Resistance added; backards compatible, except parameters 
e0,vo0,vi0,gain,rstim,tau1,tau2 that no longer exist

Clamp is on at time 0, and off at time dur[0]+dur[1]+dur[2]. When clamp is off
the injected current is 0.  The clamp levels are amp[0], amp[1], amp[2].  i is
the injected current, vc measures the control voltage) Do not insert several
instances of this model at the same location in order to make level changes.
That is equivalent to independent clamps and they will have incompatible
internal state values.

The electrical circuit for the clamp is exceedingly simple:

        rs           Rin
vc ---'\/\/`---o---'\/\/`---o
               |            |
               |____| |_____|
                    | |
                     Cm

Note that since this is an electrode current model v refers to the internal
potential which is equivalent to the membrane potential v when there is no
extracellular membrane mechanism present but is v+vext when one is present. 
Also since i is an electrode current, positive values of i depolarize the
cell. (Normally, positive membrane currents are outward and thus hyperpolarize
the cell)

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

DEFINE NSTEP 3

NEURON {
        POINT_PROCESS SEVClamp
        ELECTRODE_CURRENT i
        RANGE dur, amp, rs, vc, i
}

UNITS {
        (nA) = (nanoamp)
        (mV) = (millivolt)
        (uS) = (micromho)
}


PARAMETER {
        v (mV)
        rs = 1 (megohm)		: series resistance
}

ASSIGNED {
        i (nA)
        vc (mV)
        ic (nA)
        tc2 (ms)
        tc3 (ms)
	dur[NSTEP] (ms)
	amp[NSTEP] (mV)
        on
}

INITIAL {
        tc2 = dur[0] + dur[1]
        tc3 = tc2 + dur[2]
        on = 0
}

BREAKPOINT {
        SOLVE vstim
        if (on) {
                i = (vc - v)/rs
        }else{
                i = 0
        }
}

PROCEDURE vstim() {
        on = 1
        if (t < dur[0]) {
                vc = amp[0]
        }else if (t < tc2) {
                vc = amp[1]
        }else if (t < tc3) {
                vc = amp[2]
        }else {
                vc = 0
                on = 0
        }
        if (on) {
        }else{
                ic = 0
        }
        VERBATIM
        return 0;
        ENDVERBATIM
}

Loading data, please wait...