//genesis
/* FILE INFORMATION
** The 1991 Traub set of voltage and concentration dependent channels
** Implemented as tabchannels by : Dave Beeman
** R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson
** Journal of Neurophysiology, Vol. 66, p. 635 (1991)
**
** This file depends on functions and constants defined in defaults.g
** As it is also intended as an example of the use of the tabchannel
** object to implement concentration dependent channels, it has extensive
** comments. Note that the original units used in the paper have been
** converted to SI (MKS) units. Also, we define the ionic equilibrium
** potentials relative to the resting potential, EREST_ACT. In the
** paper, this was defined to be zero. Here, we use -0.060 volts, the
** measured value relative to the outside of the cell.
*/
/* November 1999 update for GENESIS 2.2: Previous versions of this file used
a combination of a table, tabgate, and vdep_channel to implement the
Ca-dependent K Channel - K(C). This new version uses the new tabchannel
"instant" field, introduced in GENESIS 2.2, to implement an
"instantaneous" gate for the multiplicative Ca-dependent factor in the
conductance. This allows these channels to be used with the fast
hsolve chanmodes > 1.
*/
// Now updated for Traub et al. J Neurophysiol 2003;89:909-921.
// And for LTS and FS interneurons - Cunningham et al. PNAS 2004;101:7152-7157.
// CONSTANTS
float EREST_ACT = -0.070 /* cell resting potential */
float ENAI5LTS = 0.110 + EREST_ACT // 0.050
float EKI5LTS = -0.040 + EREST_ACT // -0.100
float ECAI5LTS = 0.185 + EREST_ACT // 0.125
float EARI5LTS = 0.020 + EREST_ACT // -0.040
float SOMA_A = 3.320e-9 // soma area in square meters
/*
For these channels, the maximum channel conductance (Gbar) has been
calculated using the CA3 soma channel conductance densities and soma
area. Typically, the functions which create these channels will be used
to create a library of prototype channels. When the cell reader creates
copies of these channels in various compartments, it will set the actual
value of Gbar by calculating it from the cell parameter file.
*/
//========================================================================
// Tabchannel gNa-transient, gNa(F) 2005/03
//========================================================================
function make_NaF19
if ({exists NaF19})
return
end
create tabchannel NaF19
setfield NaF19 \
Ek 0.05 \
Ik 0 \
Xpower 3 \
Ypower 1
setfield NaF19 \
Gbar 1 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call NaF19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
if ({ v -2.5 } < -30 )
tau = 0.0125 + 0.1525 * { exp { {{v - 2.5} + 30} / 10} }
else
tau = 0.02 + 0.145 * { exp { -1 * {{v - 2.5} + 30} / 10} }
end
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
v = v * 1000 // v to units of equation
inf = 1 / { 1 + {exp { { -1 * {v - 2.5} - 38} / 10}} }
v = v * 0.001 // reset v
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield NaF19 X_A->table[{i}] {alpha}
setfield NaF19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield NaF19 X_A->calc_mode 1 X_B->calc_mode 1
// Y table for gate h
float dv = ({v_max} - {v_min})/{tab_divs}
call NaF19 TABCREATE Y {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
tau = 0.225 + 1.125 / { 1 + { exp {{v + 37} / 15} } }
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
v = v * 1000 // v to units of equation
inf = 1 / { 1 + {exp {{v + 58.3} / 6.7}} }
v = v * 0.001 // reset v
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield NaF19 Y_A->table[{i}] {alpha}
setfield NaF19 Y_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield NaF19 Y_A->calc_mode 1 Y_B->calc_mode 1
end
//========================================================================
// Tabchannel gNa-persistent (non-inactivating), gNa(P) 2005/03
//========================================================================
function make_NaP19
if ({exists NaP19})
return
end
create tabchannel NaP19
setfield NaP19 \
Ek 0.05 \
Ik 0 \
Xpower 3
setfield NaP19 \
Gbar 32 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call NaP19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
if ({v - 2.5} < -30 )
tau = 0.025 + 0.14 * { exp { {{v - 2.5} + 30} / 10} }
else
tau = 0.02 + 0.145 * { exp { -1 * {{v -2.5} + 30} / 10 } }
end
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
v = v * 1000 // v to units of equation
inf = 1 / { 1 + {exp { { -1 * {v - 2.5} - 38} / 10}} }
v = v * 0.001 // reset v
// alpha and beata
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield NaP19 X_A->table[{i}] {alpha}
setfield NaP19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield NaP19 X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Tabchannel Anomalous Rectifier, gAR 2005/03
//========================================================================
function make_AR19
if ({exists AR19})
return
end
create tabchannel AR19
setfield AR19 \
Ek -0.04 \
Ik 0 \
Xpower 1
setfield AR19 \
Gbar 2.5 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call AR19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
float tau
v = v * 1000 // v to units of equation
tau = 1 /{{exp {-14.6 - {0.086 * v} }} + {exp {-1.87 + {0.07 * v}}}}
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = 5.5, Vhalf = -75 in physiological units
// A = 1, B = 0.0055, Vhalf = -0.075
inf = 1 / ( {exp {(v + 0.075) / 0.0055}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield AR19 X_A->table[{i}] {alpha}
setfield AR19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield AR19 X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Tabchannel gK-delayed rectifier, gK(DR) 2005/03
//========================================================================
function make_KDR19
if ({exists KDR19})
return
end
create tabchannel KDR19
setfield KDR19 \
Ek -0.1 \
Ik 0 \
Xpower 4
setfield KDR19 \
Gbar 1250 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call KDR19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
if (v <= -10 )
tau = 0.25 + 4.35 * {exp {{ v + 10 }/10}}
else
tau = 0.25 + 4.35 * {exp {{- v - 10}/ 10}}
end
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = -11.5, Vhalf = -27, in physiological units
// A = 1, B = -0.0115, Vhalf = -0.027
inf = 1 / ( {exp {(v + 0.027) / -0.0115}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield KDR19 X_A->table[{i}] {alpha}
setfield KDR19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KDR19 X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Tabchannel gK-transient, gK(A) 2005/03
//========================================================================
function make_KA19
if ({exists KA19})
return
end
create tabchannel KA19
setfield KA19 \
Ek -0.1 \
Ik 0 \
Xpower 4 \
Ypower 1
setfield KA19 \
Gbar 300 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call KA19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
tau = 0.185 + 0.5 / {{exp {{ v + 35.8 }/19.7}} + {exp {{-v - 79.7}/12.7}}}
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = -8.5, Vhalf = -60 in physiological units
// A = 1, B = -0.0085, Vhalf = -0.06
inf = 1 / ( {exp {(v + 0.06) / -0.0085}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield KA19 X_A->table[{i}] {alpha}
setfield KA19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KA19 X_A->calc_mode 1 X_B->calc_mode 1
// Y table for gate h
float dv = ({v_max} - {v_min})/{tab_divs}
call KA19 TABCREATE Y {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
if (v < -63.0 )
tau = 0.5 / {{exp {{ v + 46 }/5}} + {exp {{ -v - 238 }/37.5}}}
else
tau = 9.5
end
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = 6, Vhalf = -78 in physiological units
// A = 1, B = 0.006, Vhalf = -0.078
inf = 1 / ( {exp {(v + 0.078) / 0.006}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield KA19 Y_A->table[{i}] {alpha}
setfield KA19 Y_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KA19 Y_A->calc_mode 1 Y_B->calc_mode 1
end
//========================================================================
// Tabchannel gK2-slow, gK2 2005/03
//========================================================================
function make_K219
if ({exists K219})
return
end
create tabchannel K219
setfield K219 \
Ek -0.1 \
Ik 0 \
Xpower 1 \
Ypower 1
setfield K219 \
Gbar 1 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call K219 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
tau = 4.95 + 0.5 / { {exp { {v - 81} / 25.6}} + {exp { {- v - 132} / 18 }}}
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = -17, Vhalf = -10, in physiological units
// A = 1, B = -0.017, Vhalf = -0.01
inf = 1 / ( {exp {(v + 0.01) / -0.017}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield K219 X_A->table[{i}] {alpha}
setfield K219 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield K219 X_A->calc_mode 1 X_B->calc_mode 1
// Y table for gate h
float dv = ({v_max} - {v_min})/{tab_divs}
call K219 TABCREATE Y {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
tau = 60 + 0.5 / {{exp {{ v - 1.33 }/200}} + {exp {{- v - 130}/ 7.1}}}
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = 10.6, Vhalf = -58 in physiological units
// A = 1, B = 0.0106, Vhalf = -0.058
inf = 1 / ( {exp {(v + 0.058) / 0.0106}} + 1)
// alpha & beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield K219 Y_A->table[{i}] {alpha}
setfield K219 Y_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield K219 Y_A->calc_mode 1 Y_B->calc_mode 1
end
//========================================================================
// Tabchannel gK-muscarinic receptor supressed, gK(M) 2005/03
//========================================================================
function make_KM19
if ({exists KM19})
return
end
create tabchannel KM19
setfield KM19 \
Ek -0.1 \
Ik 0 \
Xpower 1
setfield KM19 \
Gbar 75 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call KM19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// alpha
float alpha
// A = 0.02, B = -5, Vhalf = -20 in physiological units
// A = 20, B = -0.005, Vhalf = -0.02
alpha = 20 / ( {exp {(v + 0.02) / -0.005}} + 1)
// beta
float beta
// A = 0.01, B = -18, Vhalf = -43, in physiological units
// A = 10, B = -0.018, Vhalf = -0.043
beta = 10 * {exp {(v + 0.043) / -0.018}}
// alpha and beta
float tau = 1/(alpha + beta)
setfield KM19 X_A->table[{i}] {alpha}
setfield KM19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KM19 X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Tabchannel gCa(L)-low threshold, transient, gCa(L) 2005/03
//========================================================================
function make_CaL19
if ({exists CaL19})
return
end
create tabchannel CaL19
setfield CaL19 \
Ek 0.125 \
Ik 0 \
Xpower 2 \
Ypower 1
setfield CaL19 \
Gbar 1 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call CaL19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
tau = 1 + 0.33 / { {exp {{v + 27} / 10 }} + {exp {{- v - 102} / 15}} }
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = -7.4, Vhalf = -52 in physiological units
// A = 1, B = -0.0074, Vhalf = -0.052
inf = 1 / ( {exp {(v + 0.052) / -0.0074}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield CaL19 X_A->table[{i}] {alpha}
setfield CaL19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield CaL19 X_A->calc_mode 1 X_B->calc_mode 1
// Y table for gate h
float dv = ({v_max} - {v_min})/{tab_divs}
call CaL19 TABCREATE Y {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // v to units of equation
tau = 28.3 + 0.33 / {{exp {{ v + 48}/ 4}} + {exp { { -v - 407} / 50 }} }
v = v * 0.001 // reset v
// correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = 5, Vhalf = -80 in physiological units
// A = 1, B = 0.005, Vhalf = -0.08
inf = 1 / ( {exp {(v + 0.08) / 0.005}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield CaL19 Y_A->table[{i}] {alpha}
setfield CaL19 Y_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield CaL19 Y_A->calc_mode 1 Y_B->calc_mode 1
end
//==========================================================================
// Tabchannel gCaH-high threshold calcium, gCa(L) "long" 2003/05
//==========================================================================
function make_CaH19
if ({exists CaH19})
return
end
create tabchannel CaH19
setfield CaH19 \
Ek 0.125 \
Ik 0 \
Xpower 2
setfield CaH19 \
Gbar 5 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call CaH19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
float alpha
// A = 1.6, B = -13.888889, Vhalf = 5 in physiological units
// A = 1600, B = -0.013888889000000001, Vhalf = 0.005
alpha = 1600 / ( {exp {(v - 0.005) / -0.013888889000000001}} + 1)
// beta
float beta
// A = 0.1, B = -5, Vhalf = -8.9 in physiol. units
// A = 100, B = -0.005, Vhalf = -0.0089
if ( {abs {(v + 0.0089)/ -0.005}} < 1e-6)
beta = 100 * (1 + (v + 0.0089)/-0.005/2)
else
beta = 100 * ((v + 0.0089) / -0.005) /(1 - {exp {-1 * (v + 0.0089)/-0.005}})
end
// alpha & beta
float tau = 1/(alpha + beta)
setfield CaH19 X_A->table[{i}] {alpha}
setfield CaH19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield CaH19 X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Ca conc, Traub et al. J Neurophysiol 2003;89:909-921.
//========================================================================
/****************************************************************************
Next, we need an element to take the Calcium current calculated by the Ca
channel and convert it to the Ca concentration. The "Ca_concen" object
solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C. As
it is easy to make mistakes in units when using this Calcium diffusion
equation, the units used here merit some discussion.
With Ca_base = 0, this corresponds to Traub's diffusion equation for
concentration, except that the sign of the current term here is positive, as
GENESIS uses the convention that I_Ca is the current flowing INTO the
compartment through the channel. In SI units, the concentration is usually
expressed in moles/m^3 (which equals millimoles/liter), and the units of B
are chosen so that B = 1/(ion_charge * Faraday * volume). Current is
expressed in amperes and one Faraday = 96487 coulombs. However, in this
case, Traub expresses the concentration in arbitrary units, current in
microamps and uses tau = 13.33 msec (50 msec soma, 20 msec dendrites in the
2003 J Neurophys paper). If we use the same concentration units,
but express current in amperes and tau in seconds, our B constant is then
10^12 times the constant (called "phi") used in the paper. The actual value
used will typically be determined by the cell reader from the cell
parameter file (will vary inversely with surface area of compartment).
However, for the prototype channel we wlll use Traub's
corrected value for the soma. (An error in the paper gives it as 17,402
rather than 17.402.) In our units, this will be 17.402e12.
****************************************************************************/
function make_Ca_s19
if ({exists Ca_s19})
return
end
create Ca_concen Ca_s19
// params for Ca pool model
setfield Ca_s19 \
tau { 1.0 / 20 } \
Ca_base 0
addfield Ca_s19 addmsg1
setfield Ca_s19 \
addmsg1 "../CaH19 . I_Ca Ik"
end
/*
This Ca_concen element should receive an "I_Ca" message from the calcium
channel, accompanied by the value of the calcium channel current. As we
will ordinarily use the cell reader to create copies of these prototype
elements in one or more compartments, we need some way to be sure that the
needed messages are established. Although the cell reader has enough
information to create the messages which link compartments to their channels
and to other adjacent compartments, it must be provided with the information
needed to establish additional messages. This is done by placing the
message string in a user-defined field of one of the elements which is
involved in the message. The cell reader recognizes the added field names
"addmsg1", "addmsg2", etc. as indicating that they are to be
evaluated and used to set up messages. The paths are relative to the
element which contains the message string in its added field. Thus,
"../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "."
refers to the Ca_hip_conc element itself.
*/
/****************************************************************************/
function make_Ca_d19
if ({exists Ca_d19})
return
end
create Ca_concen Ca_d19
// params for Ca pool in dendrite
setfield Ca_d19 \
tau { 1.0 / 50 } \
Ca_base 0
addfield Ca_d19 addmsg1
setfield Ca_d19 \
addmsg1 "../CaH19 . I_Ca Ik"
end
/*
This Ca_concen element should receive an "I_Ca" message from the calcium
channel, accompanied by the value of the calcium channel current. As we
will ordinarily use the cell reader to create copies of these prototype
elements in one or more compartments, we need some way to be sure that the
needed messages are established. Although the cell reader has enough
information to create the messages which link compartments to their channels
and to other adjacent compartments, it must be provided with the information
needed to establish additional messages. This is done by placing the
message string in a user-defined field of one of the elements which is
involved in the message. The cell reader recognizes the added field names
"addmsg1", "addmsg2", etc. as indicating that they are to be
evaluated and used to set up messages. The paths are relative to the
element which contains the message string in its added field. Thus,
"../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "."
refers to the Ca_hip_conc element itself.
*/
//===============================================================================
// Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)2005/03
//===============================================================================
/*
The expression for the conductance of the potassium C-current channel has a
typical voltage and time dependent activation gate, where the time dependence
arises from the solution of a differential equation containing the rate
parameters alpha and beta. It is multiplied by a function of calcium
concentration that is given explicitly rather than being obtained from a
differential equation. Therefore, we need a way to multiply the activation
by a concentration dependent value which is determined from a lookup table.
This is accomplished by using the Z gate with the new tabchannel "instant"
field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for
the multiplicative Ca-dependent factor in the conductance.
*/
function make_KCs19
if ({exists KCs19})
return
end
create tabchannel KCs19
setfield KCs19 \
Ek -0.1 \
Ik 0 \
Xpower 1 \
Zpower 1
setfield KCs19 \
Gbar 120 \
Gk 0
float tab_divs = 1041
float v_min = -0.12
float v_max = 0.14
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call KCs19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// alpha
float alpha
v = v * 1000 // v to units of equation
if (v < -10 )
alpha = 2 * {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } }
else
alpha = 2 * 2 * {exp { { {-1 * v} - 53.5 } / 27 }}
end
v = v * 0.001 // reset v
// units of alpha
alpha = alpha * 1000
// beta
float beta
v = v * 1000 // v to units of equation
alpha = alpha * 0.001 // alpha to units of equation
if (v < -10 )
beta = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha
else
beta = 0.0
end
v = v * 0.001 // reset v
alpha = alpha * 1000 // reset alpha
// correct units of beta
beta = beta * 1000
// alpha and beta
float tau = 1/(alpha + beta)
setfield KCs19 X_A->table[{i}] {alpha}
setfield KCs19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KCs19 X_A->calc_mode 1 X_B->calc_mode 1
// concentration dependent term (voltage independent)
float conc_min = 0
float conc_max = 1000
float dc = ({conc_max} - {conc_min})/{tab_divs}
float ca_conc = {conc_min}
call KCs19 TABCREATE Z {tab_divs} {conc_min} {conc_max}
float const_state
for (i = 0; i <= ({tab_divs}); i = i + 1)
ca_conc = ca_conc * 0.000001 // ica_conc to units of equation
if (ca_conc < 0.00025 )
const_state = {ca_conc / 0.00025}
else
const_state = 1
end
ca_conc = ca_conc * 1000000 //reset ca_conc
setfield KCs19 Z_A->table[{i}] {0}
setfield KCs19 Z_B->table[{i}] {const_state}
ca_conc= ca_conc + dc
end
tweaktau KCs19 Z
addfield KCs19 addmsg1
setfield KCs19 addmsg1 "../Ca_s19 . CONCEN Ca"
end
function make_KCd19
if ({exists KCd19})
return
end
create tabchannel KCd19
setfield KCd19 \
Ek -0.1 \
Ik 0 \
Xpower 1 \
Zpower 1
setfield KCd19 \
Gbar 120 \
Gk 0
float tab_divs = 1041
float v_min = -0.12
float v_max = 0.14
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call KCd19 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// alpha
float alpha
v = v * 1000 // v to units of equation
if (v < -10 )
alpha = {4 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } }
else
alpha = 4 * {exp { { {-1 * v} - 53.5 } / 27 }}
end
v = v * 0.001 // reset v
// correct units of alpha
alpha = alpha * 1000
// beta
float beta
v = v * 1000 // v to units of equation
alpha = alpha * 0.001 // alpha to units of equation
if (v < -10 )
beta = 4 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha
else
beta = 0.0
end
v = v * 0.001 // reset v
alpha = alpha * 1000 // resetting alpha
// correct units of beta
beta = beta * 1000
// alpha and beta
float tau = 1/(alpha + beta)
setfield KCd19 X_A->table[{i}] {alpha}
setfield KCd19 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KCd19 X_A->calc_mode 1 X_B->calc_mode 1
// concentration dependent term (voltage independent)
float conc_min = 0
float conc_max = 1000
float dc = ({conc_max} - {conc_min})/{tab_divs}
float ca_conc = {conc_min}
call KCd19 TABCREATE Z {tab_divs} {conc_min} {conc_max}
float const_state
for (i = 0; i <= ({tab_divs}); i = i + 1)
ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
if (ca_conc < 0.00025 )
const_state = {ca_conc / 0.00025}
else
const_state = 1
end
ca_conc = ca_conc * 1000000 //reset ca_conc
setfield KCd19 Z_A->table[{i}] {0}
setfield KCd19 Z_B->table[{i}] {const_state}
ca_conc= ca_conc + dc
end
tweaktau KCd19 Z
addfield KCd19 addmsg1
setfield KCd19 addmsg1 "../Ca_d19 . CONCEN Ca"
end
//========================================================================
// Tabulated Ca-dependent K AHP Channel,gK(AHP) 2003/05
//========================================================================
/* This is a tabchannel which gets the calcium concentration from Ca_hip_conc
in order to calculate the activation of its Z gate. It is set up much
like the Ca channel, except that the A and B tables have values which are
functions of concentration, instead of voltage.
*/
function make_KAHPs19
if ({exists KAHPs19})
return
end
create tabchannel KAHPs19
setfield KAHPs19 \
Ek -0.1 \
Ik 0 \
Zpower 1
setfield KAHPs19 \
Gbar 1 \
Gk 0
float tab_divs = 1041
float c
float conc_min = 0
float conc_max = 1000
float dc = ({conc_max} - {conc_min})/{tab_divs}
float ca_conc = {conc_min}
call KAHPs19 TABCREATE Z {tab_divs} {conc_min} {conc_max}
for (c = 0; c <= ({tab_divs}); c = c + 1)
// alpha
float alpha, v
ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
if (ca_conc < 0.0005 )
alpha = ca_conc/0.05
else
alpha = 0.01
end
ca_conc = ca_conc * 1000000 // resetting ca_conc
// correct units of alpha
alpha = alpha * 1000
// beta
float beta
ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
beta = 0.001
ca_conc = ca_conc * 1000000 // resetting ca_conc
// correct units of beta
beta = beta * 1000
// alpha and beta
float tau = 1/(alpha + beta)
setfield KAHPs19 Z_A->table[{c}] {alpha}
setfield KAHPs19 Z_B->table[{c}] {alpha + beta}
ca_conc = ca_conc + dc
end // end of for (c = 0; c <= ({tab_divs}); c = c + 1)
setfield KAHPs19 Z_conc 1
setfield KAHPs19 Z_A->calc_mode 1 Z_B->calc_mode 1
addfield KAHPs19 addmsg1
setfield KAHPs19 \
addmsg1 "../Ca_s19 . CONCEN Ca"
end
function make_KAHPd19
if ({exists KAHPd19})
return
end
create tabchannel KAHPd19
setfield KAHPd19 \
Ek -0.1 \
Ik 0 \
Zpower 1
setfield KAHPd19 \
Gbar 1 \
Gk 0
float tab_divs = 1041
float c
float conc_min = 0
float conc_max = 1000
float dc = ({conc_max} - {conc_min})/{tab_divs}
float ca_conc = {conc_min}
call KAHPd19 TABCREATE Z {tab_divs} {conc_min} {conc_max}
for (c = 0; c <= ({tab_divs}); c = c + 1)
// alpha
float alpha
ca_conc = ca_conc * 0.000001 // ca_conc to units of equation
if (ca_conc < 0.0005 )
alpha = ca_conc/0.05
else
alpha = 0.01
end
ca_conc = ca_conc * 1000000 // reset ca_conc
// correct units of alpha
alpha = alpha * 1000
// beta
float beta
ca_conc = ca_conc * 0.000001 //set ca_conc to units of equation
beta = 0.001
ca_conc = ca_conc * 1000000 // reset ca_conc
// correct units of beta
beta = beta * 1000
// alpha and beta
float tau = 1/(alpha + beta)
setfield KAHPd19 Z_A->table[{c}] {alpha}
setfield KAHPd19 Z_B->table[{c}] {alpha + beta}
ca_conc = ca_conc + dc
end // end of for (c = 0; c <= ({tab_divs}); c = c + 1)
setfield KAHPd19 Z_conc 1
setfield KAHPd19 Z_A->calc_mode 1 Z_B->calc_mode 1
addfield KAHPd19 addmsg1
setfield KAHPd19 \
addmsg1 "../Ca_d19 . CONCEN Ca"
end