//genesis
/* FILE INFORMATION
** The 1991 Traub set of voltage and concentration dependent channels
** Implemented as tabchannels by : Dave Beeman
** R.D.Traub, R. K. S. Wong, R. Miles, and H. Michelson
** Journal of Neurophysiology, Vol. 66, p. 635 (1991)
**
** This file depends on functions and constants defined in defaults.g
** As it is also intended as an example of the use of the tabchannel
** object to implement concentration dependent channels, it has extensive
** comments. Note that the original units used in the paper have been
** converted to SI (MKS) units. Also, we define the ionic equilibrium
** potentials relative to the resting potential, EREST_ACT. In the
** paper, this was defined to be zero. Here, we use -0.060 volts, the
** measured value relative to the outside of the cell.
*/
/* November 1999 update for GENESIS 2.2: Previous versions of this file used
a combination of a table, tabgate, and vdep_channel to implement the
Ca-dependent K Channel - K(C). This new version uses the new tabchannel
"instant" field, introduced in GENESIS 2.2, to implement an
"instantaneous" gate for the multiplicative Ca-dependent factor in the
conductance. This allows these channels to be used with the fast
hsolve chanmodes > 1.
*/
// Now updated for Traub et al. J Neurophysiol 2003;89:909-921.
// CONSTANTS
float EREST_ACT = -0.060 /* hippocampal cell resting potl */
float ENAP6RSc = 0.115 + EREST_ACT // 0.055
float EKP6RSc = -0.015 + EREST_ACT // -0.075
float ECAP6RSc = 0.140 + EREST_ACT // 0.080
float EARP6RSc = 0.025 + EREST_ACT // -0.035
float SOMA_A = 3.320e-9 // soma area in square meters
/*
For these channels, the maximum channel conductance (Gbar) has been
calculated using the CA3 soma channel conductance densities and soma
area. Typically, the functions which create these channels will be used
to create a library of prototype channels. When the cell reader creates
copies of these channels in various compartments, it will set the actual
value of Gbar by calculating it from the cell parameter file.
*/
//========================================================================
// Tabchannel gNa-transient, gNa(F) 2005/03
//========================================================================
function make_NaF13
str chanpath = "NaF13"
if ({exists NaF13})
return
end
create tabchannel NaF13
setfield NaF13 \
Ek 0.05 \
Ik 0 \
Xpower 3 \
Ypower 1
setfield NaF13 \
Gbar 1875 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call NaF13 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
if ({v - 3.5} < -30 )
tau = 0.025 + 0.14 * { exp { {{v - 3.5} + 30} / 10} }
else
tau = 0.02 + 0.145 * { exp { -1 * {{v - 3.5} + 30} / 10 } }
end
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
// inf
float inf
v = v * 1000 // temporarily set v to units of equation...
inf = 1 / { 1 + {exp { { -1 * {v - 3.5} - 38} / 10}} }
v = v * 0.001 // reset v
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield NaF13 X_A->table[{i}] {alpha}
setfield NaF13 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield NaF13 X_A->calc_mode 1 X_B->calc_mode 1
// Creating table for gate h, using name Y for it here
float dv = ({v_max} - {v_min})/{tab_divs}
call NaF13 TABCREATE Y {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
tau = 0.15 + 1.15 / { 1 + { exp {{ v + 37 } / 15} } }
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
// inf
float inf
v = v * 1000 // temporarily set v to units of equation...
inf = 1 / { 1 + {exp {{ v + 62.9 } / 10.7}} }
v = v * 0.001 // reset v
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield NaF13 Y_A->table[{i}] {alpha}
setfield NaF13 Y_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield NaF13 Y_A->calc_mode 1 Y_B->calc_mode 1
end
//========================================================================
// Tabchannel gNa-persistent (non-inactivating), gNa(P) 2005/03
//========================================================================
function make_NaP13
str chanpath = "NaP13"
if ({exists NaP13})
return
end
create tabchannel NaP13
setfield NaP13 \
Ek 0.05 \
Ik 0 \
Xpower 1
setfield NaP13 \
Gbar 1 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call NaP13 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
if (v < -40 )
tau = 0.025 + 0.14 * {exp {{ v + 40 }/10}}
else
tau = 0.02 + 0.145 * {exp {-1 * {v + 40}/ 10}}
end
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = -10, Vhalf = -48 in physiological units
inf = 1 / ( {exp {(v + 0.048) / -0.01}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield NaP13 X_A->table[{i}] {alpha}
setfield NaP13 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield NaP13 X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Tabchannel Anomalous Rectifier, gAR 2005/03
//========================================================================
function make_AR13
str chanpath = "AR13"
if ({exists {chanpath}})
return
end
create tabchannel {chanpath}
setfield {chanpath} \
Ek -0.035 \
Ik 0 \
Xpower 1
setfield {chanpath} \
Gbar 2.5 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call {chanpath} TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
tau = 1 /{{exp {-14.6 - {0.086 * v} }} + {exp {-1.87 + {0.07 * v}}}}
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = 5.5, Vhalf = -75 in physiol units
inf = 1 / ( {exp {(v + 0.075 ) / 0.0055}} + 1)
// alpha & beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield {chanpath} X_A->table[{i}] {alpha}
setfield {chanpath} X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield {chanpath} X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Tabchannel gK-delayed rectifier, gK(DR) 2005/03
//========================================================================
function make_KDR13
str chanpath = "KDR13"
if ({exists KDR13})
return
end
create tabchannel KDR13
setfield KDR13 \
Ek -0.095 \
Ik 0 \
Xpower 4
setfield KDR13 \
Gbar 1250 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call KDR13 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
if (v < -10 )
tau = 0.25 + 4.35 * {exp {{ v + 10 }/10}}
else
tau = 0.25 + 4.35 * {exp {{- v - 10}/ 10}}
end
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = -10, Vhalf = -29.5, in physiological units
inf = 1 / ( {exp {(v + 0.0295) / -0.01}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield KDR13 X_A->table[{i}] {alpha}
setfield KDR13 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KDR13 X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Tabchannel gK-transient, gK(A) 2005/03
//========================================================================
function make_KA13
str chanpath = "KA13"
if ({exists KA13})
return
end
create tabchannel KA13
setfield KA13 \
Ek -0.095 \
Ik 0 \
Xpower 4 \
Ypower 1
setfield KA13 \
Gbar 300 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call KA13 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
tau = 0.185 + 0.5 / {{exp {{ v + 35.8 }/19.7}} + {exp {{-v - 79.7}/12.7}}}
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = -8.5, Vhalf = -60, in units: Physiological Units
inf = 1 / ( {exp {(v + 0.06) / -0.0085}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield KA13 X_A->table[{i}] {alpha}
setfield KA13 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KA13 X_A->calc_mode 1 X_B->calc_mode 1
// Y table for gate h
float dv = ({v_max} - {v_min})/{tab_divs}
call KA13 TABCREATE Y {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
if (v < -63.0 )
tau = 0.5 / {{exp {{ v + 46 }/5}} + {exp {{ -v - 238 }/37.5}}}
else
tau = 9.5
end
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = 6, Vhalf = -78, in physiological units
inf = 1 / ( {exp {(v + 0.078) / 0.006}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield KA13 Y_A->table[{i}] {alpha}
setfield KA13 Y_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KA13 Y_A->calc_mode 1 Y_B->calc_mode 1
end
//========================================================================
// Tabchannel gK2-slow, gK2 2005/03
//========================================================================
function make_K213
str chanpath = "K213"
if ({exists K213})
return
end
create tabchannel K213
setfield K213 \
Ek -0.095 \
Ik 0 \
Xpower 1 \
Ypower 1
setfield K213 \
Gbar 1 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// X table for gate m
float dv = ({v_max} - {v_min})/{tab_divs}
call K213 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
tau = 4.95 + 0.5 / { {exp { {v - 81} / 25.6}} + {exp { {- v - 132} / 18 }}}
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
// Looking at rate: inf
float inf
// A = 1, B = -17, Vhalf = -10, in physiological units
inf = 1 / ( {exp {(v + 0.01) / -0.017}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield K213 X_A->table[{i}] {alpha}
setfield K213 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield K213 X_A->calc_mode 1 X_B->calc_mode 1
// Y table for gate h
float dv = ({v_max} - {v_min})/{tab_divs}
call K213 TABCREATE Y {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
tau = 60 + 0.5 / {{exp {{ v - 1.33 }/200}} + {exp {{- v - 130}/ 7.1}}}
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
//inf
float inf
// A = 1, B = 10.6, Vhalf = -58, in units: Physiological Units
inf = 1 / ( {exp {(v + 0.058) / 0.0106}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield K213 Y_A->table[{i}] {alpha}
setfield K213 Y_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield K213 Y_A->calc_mode 1 Y_B->calc_mode 1
end
//========================================================================
// Tabchannel gK-muscarinic receptor supressed, gK(M) 2005/03
//========================================================================
function make_KM13
str chanpath = "KM13"
if ({exists KM13})
return
end
create tabchannel KM13
setfield KM13 \
Ek -0.095 \
Ik 0 \
Xpower 1
setfield KM13 \
Gbar 75 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// Creating table for gate m, using name X for it here
float dv = ({v_max} - {v_min})/{tab_divs}
call KM13 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
//alpha
float alpha
// A = 0.02, B = -5, Vhalf = -20, in units: Physiological Units
alpha = 20 / ( {exp {(v +0.02)/-0.005}} + 1)
//beta
float beta
// A = 0.01, B = -18, Vhalf = -43, in physiological Units
beta = 10 * {exp {(v +0.043) / -0.018}}
// Using the alpha and beta expressions to populate the tables
float tau = 1/(alpha + beta)
setfield KM13 X_A->table[{i}] {alpha}
setfield KM13 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KM13 X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Tabchannel gCa(L)-low threshold, transient, gCa(L) 2005/03
//========================================================================
function make_CaL13
str chanpath = "CaL13"
if ({exists CaL13})
return
end
create tabchannel CaL13
setfield CaL13 \
Ek 0.125 \
Ik 0 \
Xpower 2 \
Ypower 1
setfield CaL13 \
Gbar 1 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// Creating table for gate m, using name X for it here
float dv = ({v_max} - {v_min})/{tab_divs}
call CaL13 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// Looking at rate: tau
float tau
v = v * 1000 // temporarily set v to units of equation...
tau = 0.204 + 0.333 / { {exp {{15.8 + v} / 18.2 }} + {exp {{- v - 131} / 16.7}} }
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
// inf
float inf
// A = 1, B = -6.2, Vhalf = -56.0, in physiological Units
inf = 1 / ( {exp {(v + 0.056) / -0.0062}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield CaL13 X_A->table[{i}] {alpha}
setfield CaL13 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield CaL13 X_A->calc_mode 1 X_B->calc_mode 1
// Creating table for gate h, using name Y for it here
float dv = ({v_max} - {v_min})/{tab_divs}
call CaL13 TABCREATE Y {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// tau
float tau
v = v * 1000 // temporarily set v to units of equation...
if (v < -81.0 )
tau = 0.333 * {exp {{ v + 466 } / 66.6}}
else
tau = 9.32 + 0.333 * {exp {{ - v - 21 } / 10.5}}
end
v = v * 0.001 // reset v
// Set correct units of tau
tau = tau * 0.001
//inf
float inf
// A = 1, B = 4, Vhalf = -80, in units: Physiological Units
inf = 1 / ( {exp {(v + 0.08 ) / 0.004}} + 1)
// alpha and beta
float alpha
float beta
alpha = inf / tau
beta = (1- inf)/tau
setfield CaL13 Y_A->table[{i}] {alpha}
setfield CaL13 Y_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield CaL13 Y_A->calc_mode 1 Y_B->calc_mode 1
end
//==========================================================================
// Tabchannel gCaH-high threshold calcium, gCa(L) "long" 2003/05
//==========================================================================
function make_CaH13
str chanpath = "CaH13"
if ({exists CaH13})
return
end
create tabchannel CaH13
setfield CaH13 \
Ek 0.125 \
Ik 0 \
Xpower 2
setfield CaH13 \
Gbar 5 \
Gk 0
float tab_divs = 741
float v_min = -0.12
float v_max = 0.06
float v, dv, i
// Creating table for gate m, using name X for it here
float dv = ({v_max} - {v_min})/{tab_divs}
call CaH13 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// alpha
float alpha
// A = 1.6, B = -13.888889, Vhalf = 5, in physiological Units
alpha = 1600 / ( {exp {(v - 0.005) /-0.013888889000000001}} + 1)
// beta
float beta
if ( {abs {(v + 0.0089)/ -0.005}} < 1e-6)
beta = 100 * (1 + (v +0.0089)/-0.005/2)
else
beta = 100 * ((v + 0.0089 ) / -0.005) /(1 - {exp {-1 * (v + 0.0089)/-0.005}})
end
// Using the alpha and beta expressions to populate the tables
float tau = 1/(alpha + beta)
setfield CaH13 X_A->table[{i}] {alpha}
setfield CaH13 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield CaH13 X_A->calc_mode 1 X_B->calc_mode 1
end
//========================================================================
// Ca conc, Traub et al. J Neurophysiol 2003;89:909-921.
//========================================================================
/****************************************************************************
Next, we need an element to take the Calcium current calculated by the Ca
channel and convert it to the Ca concentration. The "Ca_concen" object
solves the equation dC/dt = B*I_Ca - C/tau, and sets Ca = Ca_base + C. As
it is easy to make mistakes in units when using this Calcium diffusion
equation, the units used here merit some discussion.
With Ca_base = 0, this corresponds to Traub's diffusion equation for
concentration, except that the sign of the current term here is positive, as
GENESIS uses the convention that I_Ca is the current flowing INTO the
compartment through the channel. In SI units, the concentration is usually
expressed in moles/m^3 (which equals millimoles/liter), and the units of B
are chosen so that B = 1/(ion_charge * Faraday * volume). Current is
expressed in amperes and one Faraday = 96487 coulombs. However, in this
case, Traub expresses the concentration in arbitrary units, current in
microamps and uses tau = 13.33 msec (50 msec soma, 20 msec dendrites in the
2003 J Neurophys paper). If we use the same concentration units,
but express current in amperes and tau in seconds, our B constant is then
10^12 times the constant (called "phi") used in the paper. The actual value
used will typically be determined by the cell reader from the cell
parameter file (will vary inversely with surface area of compartment).
However, for the prototype channel we will use Traub's
corrected value for the soma. (An error in the paper gives it as 17,402
rather than 17.402.) In our units, this will be 17.402e12.
****************************************************************************/
function make_Ca_s13
str chanpath = "Ca_s13"
if ({exists Ca_s13})
return
end
create Ca_concen Ca_s13
// Setting params for a decaying_pool_model
setfield Ca_s13 \
tau { 1.0 / 10 } \
Ca_base 0
addfield Ca_s13 addmsg1
setfield Ca_s13 \
addmsg1 "../CaH13 . I_Ca Ik"
addfield Ca_s13 addmsg2
setfield Ca_s13 \
addmsg2 "../CaL13 . I_Ca Ik"
end
/*
This Ca_concen element should receive an "I_Ca" message from the calcium
channel, accompanied by the value of the calcium channel current. As we
will ordinarily use the cell reader to create copies of these prototype
elements in one or more compartments, we need some way to be sure that the
needed messages are established. Although the cell reader has enough
information to create the messages which link compartments to their channels
and to other adjacent compartments, it must be provided with the information
needed to establish additional messages. This is done by placing the
message string in a user-defined field of one of the elements which is
involved in the message. The cell reader recognizes the added field names
"addmsg1", "addmsg2", etc. as indicating that they are to be
evaluated and used to set up messages. The paths are relative to the
element which contains the message string in its added field. Thus,
"../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "."
refers to the Ca_hip_conc element itself.
*/
/****************************************************************************/
function make_Ca_d13
str chanpath = "Ca_d13"
if ({exists Ca_d13})
return
end
create Ca_concen Ca_d13
// Setting params for a decaying_pool_model
setfield Ca_d13 \
tau { 1.0 / 50 } \
Ca_base 0
addfield Ca_d13 addmsg1
setfield Ca_d13 \
addmsg1 "../CaH13 . I_Ca Ik"
addfield Ca_d13 addmsg2
setfield Ca_d13 \
addmsg2 "../CaL13 . I_Ca Ik"
end
/*
This Ca_concen element should receive an "I_Ca" message from the calcium
channel, accompanied by the value of the calcium channel current. As we
will ordinarily use the cell reader to create copies of these prototype
elements in one or more compartments, we need some way to be sure that the
needed messages are established. Although the cell reader has enough
information to create the messages which link compartments to their channels
and to other adjacent compartments, it must be provided with the information
needed to establish additional messages. This is done by placing the
message string in a user-defined field of one of the elements which is
involved in the message. The cell reader recognizes the added field names
"addmsg1", "addmsg2", etc. as indicating that they are to be
evaluated and used to set up messages. The paths are relative to the
element which contains the message string in its added field. Thus,
"../Ca_hip_traub91" refers to the sibling element Ca_hip_traub91 and "."
refers to the Ca_hip_conc element itself.
*/
//===============================================================================
// Ca-dependent K Channel - K(C) - (vdep_channel with table and tabgate)2005/03
//===============================================================================
/*
The expression for the conductance of the potassium C-current channel has a
typical voltage and time dependent activation gate, where the time dependence
arises from the solution of a differential equation containing the rate
parameters alpha and beta. It is multiplied by a function of calcium
concentration that is given explicitly rather than being obtained from a
differential equation. Therefore, we need a way to multiply the activation
by a concentration dependent value which is determined from a lookup table.
This is accomplished by using the Z gate with the new tabchannel "instant"
field, introduced in GENESIS 2.2, to implement an "instantaneous" gate for
the multiplicative Ca-dependent factor in the conductance.
*/
function make_KCs13
if ({exists KCs13})
return
end
create tabchannel KCs13
setfield KCs13 \
Ek -0.095 \
Ik 0 \
Xpower 1 \
Zpower 1
setfield KCs13 \
Gbar 120 \
Gk 0
float tab_divs = 1041
float v_min = -0.12
float v_max = 0.14
float v, dv, i
// Creating table for gate m, using name X for it here
float dv = ({v_max} - {v_min})/{tab_divs}
call KCs13 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// Looking at rate: alpha
float alpha
v = v * 1000 // temporarily set v to units of equation...
if (v < -10 )
alpha = {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } }
else
alpha = 2 * {exp { { {-1 * v} - 53.5 } / 27 }}
end
v = v * 0.001 // reset v
// Set correct units of alpha
alpha = alpha * 1000
// beta
float beta
v = v * 1000 // temporarily set v to units of equation...
// Equation depends on alpha, so converting it...
alpha = alpha * 0.001
if (v < -10 )
beta = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha
else
beta = 0.0
end
v = v * 0.001 // reset v
alpha = alpha * 1000 // resetting alpha
// Set correct units of beta
beta = beta * 1000
// Using the alpha and beta expressions to populate the tables
float tau = 1/(alpha + beta)
setfield KCs13 X_A->table[{i}] {alpha}
setfield KCs13 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KCs13 X_A->calc_mode 1 X_B->calc_mode 1
// Adding voltage independent concentration term
float conc_min = 0
float conc_max = 1000
float dc = ({conc_max} - {conc_min})/{tab_divs}
float ca_conc = {conc_min}
call KCs13 TABCREATE Z {tab_divs} {conc_min} {conc_max}
float const_state
for (i = 0; i <= ({tab_divs}); i = i + 1)
// Equation is in different set of units...
ca_conc = ca_conc * 0.000001
if (ca_conc < 0.00025 )
const_state = {ca_conc / 0.00025}
else
const_state = 1
end
// Converting back...
ca_conc = ca_conc * 1000000
setfield KCs13 Z_A->table[{i}] {0}
setfield KCs13 Z_B->table[{i}] {const_state}
ca_conc= ca_conc + dc
end
tweaktau KCs13 Z
addfield KCs13 addmsg1
setfield KCs13 addmsg1 "../Ca_s13 . CONCEN Ca"
end
function make_KCd13
if ({exists KCd13})
return
end
create tabchannel KCd13
setfield KCd13 \
Ek -0.095 \
Ik 0 \
Xpower 1 \
Zpower 1
setfield KCd13 \
Gbar 120 \
Gk 0
float tab_divs = 1041
float v_min = -0.12
float v_max = 0.14
float v, dv, i
// Creating table for gate m, using name X for it here
float dv = ({v_max} - {v_min})/{tab_divs}
call KCd13 TABCREATE X {tab_divs} {v_min} {v_max}
v = {v_min}
for (i = 0; i <= ({tab_divs}); i = i + 1)
// Looking at rate: alpha
float alpha
v = v * 1000 // temporarily set v to units of equation...
if (v < -10 )
alpha = {2 / 37.95} * { exp { {{v + 50 } / 11} - {{ v + 53.5} / 27} } }
else
alpha = 2 * {exp { { {-1 * v} - 53.5 } / 27 }}
end
v = v * 0.001 // reset v
// Set correct units of alpha
alpha = alpha * 1000
// Looking at rate: beta
float beta
v = v * 1000 // temporarily set v to units of equation...
// Equation depends on alpha, so converting it...
alpha = alpha * 0.001
if (v < -10 )
beta = 2 * {exp { { {-1 * v} - 53.5 } / 27 }} - alpha
else
beta = 0.0
end
v = v * 0.001 // reset v
alpha = alpha * 1000 // resetting alpha
// Set correct units of beta
beta = beta * 1000
// Using the alpha and beta expressions to populate the tables
float tau = 1/(alpha + beta)
setfield KCd13 X_A->table[{i}] {alpha}
setfield KCd13 X_B->table[{i}] {alpha + beta}
v = v + dv
end // end of for (i = 0; i <= ({tab_divs}); i = i + 1)
setfield KCd13 X_A->calc_mode 1 X_B->calc_mode 1
// Adding voltage independent concentration term
float conc_min = 0
float conc_max = 1000
float dc = ({conc_max} - {conc_min})/{tab_divs}
float ca_conc = {conc_min}
call KCd13 TABCREATE Z {tab_divs} {conc_min} {conc_max}
float const_state
for (i = 0; i <= ({tab_divs}); i = i + 1)
// Equation is in different set of units...
ca_conc = ca_conc * 0.000001
if (ca_conc < 0.00025 )
const_state = {ca_conc / 0.00025}
else
const_state = 1
end
// Converting back...
ca_conc = ca_conc * 1000000
setfield KCd13 Z_A->table[{i}] {0}
setfield KCd13 Z_B->table[{i}] {const_state}
ca_conc= ca_conc + dc
end
tweaktau KCd13 Z
addfield KCd13 addmsg1
setfield KCd13 addmsg1 "../Ca_d13 . CONCEN Ca"
end
//========================================================================
// Tabulated Ca-dependent K AHP Channel,gK(AHP) 2003/05
//========================================================================
/* This is a tabchannel which gets the calcium concentration from Ca_hip_conc
in order to calculate the activation of its Z gate. It is set up much
like the Ca channel, except that the A and B tables have values which are
functions of concentration, instead of voltage.
*/
function make_KAHPs13
if ({exists KAHPs13})
return
end
create tabchannel KAHPs13
setfield KAHPs13 \
Ek -0.095 \
Ik 0 \
Zpower 1
setfield KAHPs13 \
Gbar 1 \
Gk 0
float tab_divs = 1041
// Channel is dependent on concentration of: Calcium, rate equations will involve variable: ca_conc
float c
float conc_min = 0
float conc_max = 1000
float dc = ({conc_max} - {conc_min})/{tab_divs}
float ca_conc = {conc_min}
call KAHPs13 TABCREATE Z {tab_divs} {conc_min} {conc_max}
for (c = 0; c <= ({tab_divs}); c = c + 1)
// Looking at rate: alpha
float alpha
float v
v = v * 1000 // temporarily set v to units of equation...
// Equation depends on concentration, so converting that too...
ca_conc = ca_conc * 0.000001
if (ca_conc < 0.0001 )
alpha = ca_conc/0.01
else
alpha = 0.01
end
v = v * 0.001 // reset v
ca_conc = ca_conc * 1000000 // resetting ca_conc
// Set correct units of alpha
alpha = alpha * 1000
// Looking at rate: beta
float beta
v = v * 1000 // temporarily set v to units of equation...
// Equation depends on concentration, so converting that too...
ca_conc = ca_conc * 0.000001
beta = 0.001
v = v * 0.001 // reset v
ca_conc = ca_conc * 1000000 // resetting ca_conc
// Set correct units of beta
beta = beta * 1000
// Using the alpha and beta expressions to populate the tables
float tau = 1/(alpha + beta)
setfield KAHPs13 Z_A->table[{c}] {alpha}
setfield KAHPs13 Z_B->table[{c}] {alpha + beta}
ca_conc = ca_conc + dc
end // end of for (c = 0; c <= ({tab_divs}); c = c + 1)
setfield KAHPs13 Z_conc 1
setfield KAHPs13 Z_A->calc_mode 1 Z_B->calc_mode 1
// Use an added field to tell the cell reader to set up the
// CONCEN message from the Ca_concen element
addfield KAHPs13 addmsg1
setfield KAHPs13 \
addmsg1 "../Ca_s13 . CONCEN Ca"
end
function make_KAHPd13
if ({exists KAHPd13})
return
end
create tabchannel KAHPd13
setfield KAHPd13 \
Ek -0.095 \
Ik 0 \
Zpower 1
setfield KAHPd13 \
Gbar 1 \
Gk 0
float tab_divs = 1041
// Channel is dependent on concentration of: Calcium, rate equations will involve variable: ca_conc
float c
float conc_min = 0
float conc_max = 1000
float dc = ({conc_max} - {conc_min})/{tab_divs}
float ca_conc = {conc_min}
call KAHPd13 TABCREATE Z {tab_divs} {conc_min} {conc_max}
for (c = 0; c <= ({tab_divs}); c = c + 1)
// Looking at rate: alpha
float alpha
float v
v = v * 1000 // temporarily set v to units of equation...
// Equation depends on concentration, so converting that too...
ca_conc = ca_conc * 0.000001
if (ca_conc < 0.0001 )
alpha = ca_conc/0.01
else
alpha = 0.01
end
v = v * 0.001 // reset v
ca_conc = ca_conc * 1000000 // resetting ca_conc
// Set correct units of alpha
alpha = alpha * 1000
// Looking at rate: beta
float beta
v = v * 1000 // temporarily set v to units of equation...
// Equation depends on concentration, so converting that too...
ca_conc = ca_conc * 0.000001
beta = 0.001
v = v * 0.001 // reset v
ca_conc = ca_conc * 1000000 // resetting ca_conc
// Set correct units of beta
beta = beta * 1000
// Using the alpha and beta expressions to populate the tables
float tau = 1/(alpha + beta)
setfield KAHPd13 Z_A->table[{c}] {alpha}
setfield KAHPd13 Z_B->table[{c}] {alpha + beta}
ca_conc = ca_conc + dc
end // end of for (c = 0; c <= ({tab_divs}); c = c + 1)
setfield KAHPd13 Z_conc 1
setfield KAHPd13 Z_A->calc_mode 1 Z_B->calc_mode 1
// Use an added field to tell the cell reader to set up the
// CONCEN message from the Ca_concen element
addfield KAHPd13 addmsg1
setfield KAHPd13 \
addmsg1 "../Ca_d13 . CONCEN Ca"
end