Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
# ============================================================================
#
#                            PUBLIC DOMAIN NOTICE
#
#       National Institute on Deafness and Other Communication Disorders
#
# This software/database is a "United States Government Work" under the 
# terms of the United States Copyright Act. It was written as part of 
# the author's official duties as a United States Government employee and 
# thus cannot be copyrighted. This software/database is freely available 
# to the public for use. The NIDCD and the U.S. Government have not placed 
# any restriction on its use or reproduction. 
#
# Although all reasonable efforts have been taken to ensure the accuracy 
# and reliability of the software and data, the NIDCD and the U.S. Government 
# do not and cannot warrant the performance or results that may be obtained 
# by using this software or data. The NIDCD and the U.S. Government disclaim 
# all warranties, express or implied, including warranties of performance, 
# merchantability or fitness for any particular purpose.
#
# Please cite the author in any work or product based on this material.
# 
# ==========================================================================



# ***************************************************************************
#
#   Large-Scale Neural Modeling software (LSNM)
#
#   Section on Brain Imaging and Modeling
#   Voice, Speech and Language Branch
#   National Institute on Deafness and Other Communication Disorders
#   National Institutes of Health
#
#   This file (plot_TVB_nodes.py) was created on June 17 2015
#
#
#   Author: Antonio Ulloa. Last updated by Antonio Ulloa on June 17 2015  
# **************************************************************************/

# plot_TVB_nodes.py
#
# Plot electrical activity in given TVB nodes in a preprocessed TVB simulation
# file with extension *.npy

import numpy as np
import matplotlib.pyplot as pl

RawData = np.load("../simulator/wilson_cowan_brain_998_nodes.npy")

pl.plot(RawData[:,0,345])
pl.plot(RawData[:,0,393])
pl.plot(RawData[:,0,413])
pl.plot(RawData[:,0,74])
pl.grid(True)

pl.show()

Loading data, please wait...