Robust transmission in the inhibitory Purkinje Cell to Cerebellar Nuclei pathway (Abbasi et al 2017)

 Download zip file 
Help downloading and running models
Accession:229279

References:
1 . Abbasi S, Hudson AE, Maran SK, Cao Y, Abbasi A, Heck DH, Jaeger D (2017) Robust Transmission of Rate Coding in the Inhibitory Purkinje Cell to Cerebellar Nuclei Pathway in Awake Mice PLOS Computational Biology
2 . Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D (2011) Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. J Comput Neurosci 30:633-58 [PubMed]
3 . Steuber V, Jaeger D (2013) Modeling the generation of output by the cerebellar nuclei. Neural Netw 47:112-9 [PubMed]
4 . Steuber V, De Schutter E, Jaeger D (2004) Passive models of neurons in the deep cerebellar nuclei: the effect of reconstruction errors Neurocomputing 58-60:563-568
5 . Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V (2011) STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum 10:667-82 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s): I h; I T low threshold; I L high threshold; I Na,p; I Na,t; I K,Ca; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Synaptic Integration;
Implementer(s): Jaeger, Dieter [djaeger at emory.edu];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I K; I h; I K,Ca; Gaba; Glutamate;
function data=locsmooth(data,Fs,Tw,Ts)
%  Running line fit (using local linear regression) - 1d only, continuous
%  processes
%  Usage: data=locsmooth(data,Fs,Tw,Ts)
%  Inputs:
% Note that units of Fs, movinwin have to be consistent.
%  data  (single vector) 
%  Fs    (sampling frequency) - optional. Default 1
%  Tw    (length of moving window) - optional.  Default. full length of data (global detrend)
%  Ts    (step size) - optional. Default Tw/2.
% 
% Output:
% data   (locally smoothed data).
data=change_row_to_column(data);
N=size(data,1);
if nargin < 2; Fs=1; end;
if nargin < 3; Tw=N/Fs; end;
if nargin < 4; Ts=Tw/2; end;

n=round(Fs*Tw);
dn=round(Fs*Ts);
if ~isreal(data) 
  yr=real(data); 
  yi=imag(data); 
  tmp=runline(yr,n,dn); 
  yr=tmp';
  tmp=runline(yi,n,dn); 
  yi=tmp';
  data=yr+i*yi;
else
  tmp=runline(data,n,dn); 
  data=tmp';
end

Loading data, please wait...