Distance-dependent inhibition in the hippocampus (Strüber et al. 2017)

 Download zip file 
Help downloading and running models
Accession:229750
Network model of a hippocampal circuit including interneurons and principal cells. Amplitude and decay time course of inhibitory synapses can be systematically changed for different distances between connected cells. Various forms of excitatory drives can be administered to the network including spatially structured input.
Reference:
1 . Strüber M, Sauer JF, Jonas P, Bartos M (2017) Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus. Nat Commun 8:758 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Dentate gyrus;
Cell Type(s): Dentate gyrus granule GLU cell; Dentate gyrus basket cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Gamma oscillations; Spatio-temporal Activity Patterns;
Implementer(s): Strüber, Michael [michael_strueber at hotmail.com];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; GabaA; Glutamate; Gaba; Glutamate;
/
DDnet
readme.txt
gap.mod
kaprox.mod *
kdrca1.mod *
km.mod *
na3n.mod *
net_hh_wbsh.mod
net_dd_ana.hoc
net_dd_emodel.hoc
net_dd_imodel.hoc
net_dd_params.hoc
net_dd_procs.hoc
net_dd_run.hoc
net_dd_vectors.hoc
                            
//////////////////////
/* net_dd_procs.hoc */
//////////////////////

/* -------------------------------------------------------------------------- */
/* -------------- NET BUILDING ---------------------------------------------- */
/* -------------------------------------------------------------------------- */

// __________________________
// Synapses - 1st Level

// a) ii
proc connect_random_II() {local i,j,pre,c,s,ct,tau // connect cells in a random fashion with the distribution given in lt_II
    c = 0
    if (conmx == 1) {       // Record the connectivity matrix: rows: presynaptic cells, columns: postsynaptic cells
        conmx_II = new Matrix(nIN,nIN)
        conmx_II.zero()
    }
    for i = 0, nIN - 1 {		
        c=0 st=0
	      for j = -max_ddcon_II,max_ddcon_II {
          //if (abs(j) > 0) {   // Make sure there are no autapses.	
            if (rduni.repick() <= lt_II.x[abs(j)]) {
			          pre=i+j
			   
			          while (pre<0) { pre=nIN+pre }
			          while (pre>=nIN) { pre=pre-nIN }
			   
			          rnd1 = abs(rdnormII.repick())
			          while (rnd1 > max_ddcon_II) { rnd1 = abs(rdnormII.repick()) }
			          rnd1 = int(rnd1)
			          
			          rnd2 = abs(rdnormII.repick())
			          while (rnd2 > max_ddcon_II) { rnd2 = abs(rdnormII.repick()) }
			          rnd2 = int(rnd2)
			           
                if (shuffled_II > 0) { 
		                s = SynG_II * negexp_II.x[abs(rnd1) - 1]
		                if (shuffled_II > 1) {
                        tau = abs(rnd2)
                    } else {
                        tau = abs(rnd1)
                    }
		            } else {
	                  s = SynG_II * negexp_II.x[abs(j) - 1]
	                  tau = abs(j)
                    if (a_ddg_II == 0) {
                        s = rdnorm.repick()*SynGcv_II*s+s
                    } 
                    // The negexp_II-Vector assigns the value "1" to the 0th element which 
                    // coincides with the presynaptic IN. In order to assign the "1" to 
                    // the closest neighbouring IN, I have to subtract "1" from the index
                    // of the negexp_II-Vector.
		            if (s<0) { s=0 }
	              }
                
                if (conmx == 1) { conmx_II.x[pre][i] = ind_gcomp(s,Syn_II_rise,tau) }
                
                interneuron[i].connect_pre_II(interneuron[pre],abs(j),s,tau) 
	              c += 1
	              st += s
	              }
       } 
    }
    printf("ii connections random pattern.\n") 
}

// b) ie
proc connect_random_IE() {local i,j,pre,c,s,ct,r // connect cells in a random fashion with the distribution given in lt_IE
    c = 0
    if (conmx == 1) {       // Record the connectivity matrix: rows: presynaptic cells, columns: postsynaptic cells
        conmx_IE = new Matrix(nIN,nPN)
        conmx_IE.zero()
    }
    for i = 0, nPN - 1 {		
        c=0 st=0
	      for j = -max_ddcon_IE,max_ddcon_IE { 	
            if (rduni.repick() <=lt_IE.x[abs(j)]) {  
			          pre=int(i*nIN/nPN)+j
			   
			          while (pre<0) { pre=nIN+pre }
			          while (pre>=nIN) { pre=pre-nIN }
			   
			          rnd1 = abs(rdnormIE.repick())
			          while (rnd1 > max_ddcon_II) { rnd1 = abs(rdnormIE.repick()) }
			          rnd1 = int(rnd1)
			          
			          rnd2 = abs(rdnormIE.repick())
			          while (rnd2 > max_ddcon_II) { rnd2 = abs(rdnormIE.repick()) }
			          rnd2 = int(rnd2)
			   
                if (shuffled_IE > 0) { 
		                s = SynG_IE * negexp_IE.x[abs(rnd1) - 1]
		                if (shuffled_IE > 1) {
                        tau = abs(rnd2)
                    } else {
                        tau = abs(rnd1)
                    }
		            } else {
	                  s = SynG_IE * negexp_IE.x[abs(j) - 1]
	                  tau = abs(j)
                    if (a_ddg_IE == 0) {
                        s = rdnorm.repick()*SynGcv_IE*s+s
                    } 
                    // The negexp_II-Vector assigns the value "1" to the 0th element which 
                    // coincides with the presynaptic IN. In order to assign the "1" to 
                    // the closest neighbouring IN, I have to subtract "1" from the index
                    // of the negexp_II-Vector.
		            if (s<0) { s=0 }
	              }
                
                if (conmx == 1) { conmx_IE.x[pre][i] = ind_gcomp(s,Syn_IE_rise,tau) }
                
                principalneuron[i].connect_pre_IE(interneuron[pre],abs(j),s,tau) 
	              c += 1
	              st += s
	           }
         }
    }
    printf("ie connections random pattern.\n") 
}

// c) ei
proc connect_random_EI() {local i,j,pre,c,s,ct // connect cells in a random and non-distance-dependent fashion
    c = 0
    if (conmx == 1) {       // Record the connectivity matrix: rows: presynaptic cells, columns: postsynaptic cells
        conmx_EI = new Matrix(nPN,nIN)
        conmx_EI.zero()
    }
    for i = 0, nIN - 1 {		
        c=0 st=0
	      for j = -max_ddcon_EI,max_ddcon_EI { 	
            if (rduni.repick() <= lt_EI.x[abs(j)]) {
			          pre=(i*nPN/nIN)+j
			   
			          while (pre<0)  { pre=nPN+pre }
			          while (pre>=nPN) { pre=pre-nPN }
			   
                if (SynGcv_EI == 0) { 
		                s = SynG_EI
	              } else { 
		                s = rdnorm.repick()*SynGcv_EI*SynG_EI+SynG_EI
		                if (s<0) { s=0 }
	              }
	             
	              if (conmx == 1) { conmx_EI.x[pre][i] = ind_gcomp(s,Syn_EI_rise,tau) }
	              
	              interneuron[i].connect_pre_EI(principalneuron[pre],abs(j),s) 
	              c += 1
	              st += s
	           }
         }
    }
    printf("ei connections random pattern.\n") 
}

// d) ee
proc connect_random_EE() {local i,j,pre,c,s,ct // connect cells in a random and non-distance-dependent fashion
    c = 0
    if (conmx == 1) {       // Record the connectivity matrix: rows: presynaptic cells, columns: postsynaptic cells
        conmx_EE = new Matrix(nPN,nPN)
        conmx_EE.zero()
    }
    for i = 0, nPN - 1 {		
        c=0 st=0
	      for j = -max_ddcon_EE,max_ddcon_EE { 	
            if (rduni.repick() <= lt_EE.x[abs(j)]) {
			          pre=i+j
			   
			          while (pre<0)  { pre=nPN+pre }
			          while (pre>=nPN) { pre=pre-nPN }
			   
                if (SynGcv_EE == 0) { 
		                s = SynG_EE
	              } else { 
		                s = rdnorm.repick()*SynGcv_EE*SynG_EE+SynG_EE
		                if (s<0) { s=0 }
	              }
	             
	              if (conmx == 1) { conmx_EE.x[pre][i] = ind_gcomp(s,Syn_EE_rise,tau) }
	             
	              principalneuron[i].connect_pre_EE(principalneuron[pre],abs(j),s) 
	              c += 1
	              st += s
	           }
         }
    }
    printf("ee connections random pattern.\n") 
}

// _____________________________________________________________________________
//

// __________________________
// Synapses - 2nd Level

proc disconnect_net_II() {local i
    for i = 0,nIN-1 { interneuron[i].disconnect_cell_II() }
    msyn=0
}

proc disconnect_net_IE() {local i
    for i = 0,nPN-1 { principalneuron[i].disconnect_cell_IE() } 
    msyn=0
}

proc disconnect_net_EI() {local i
    for i = 0,nIN-1 { interneuron[i].disconnect_cell_EI() }
    msyn=0
}

proc disconnect_net_EE() {local i
    for i = 0,nPN-1 { principalneuron[i].disconnect_cell_EE() }
    msyn=0
}

proc connect_net() {
    connect_random_II()
	  connect_random_IE()
	  connect_random_EI()
}

proc disconnect_net() {
	  disconnect_net_II()
	  disconnect_net_IE()
	  disconnect_net_EI()
}

proc connect_pureff_net() {
    connect_random_II()
	  connect_random_IE()
}

proc disconnect_pureff_net() {
    disconnect_net_II()
	  disconnect_net_IE()
}

proc connect_recurrent_net() {
    connect_random_II()
	  connect_random_IE()
	  connect_random_EI()
	  connect_random_EE()
}

proc disconnect_recurrent_net() {
    disconnect_net_II()
	  disconnect_net_IE()
	  disconnect_net_EI()
	  disconnect_net_EE()
}

// _____________________________________________________________________________
//

// __________________________
// Gaps

proc connect_gaps() {local i,j,n,pre
    n = 0
    for i=0,nIN-1 {
        for j=1,4 {
            pre=i+j
            if (pre>=nIN) { pre-=nIN } 
            if (rdg.repick()) {             
	              interneuron[i].connect_gap(interneuron[pre]) 
	              interneuron[pre].connect_gap(interneuron[i])
	              n += 1
            }   
        }
    }
    gaps=2*n/nIN
    printf("Gaps inserted: %d \n",n)
}

proc disconnect_gaps() {local i
    for i = 0,nIN-1  { interneuron[i].disconnect_gaps() }
    gaps=0
}

// _____________________________________________________________________________
//


// __________________________________________
// Initiate constant excitatory drive

proc initdrv_IN() {
    for i = 0,nIN-1 {
        if (tdrv2 == 0) {						
			      interneuron[i].drv_interneuron.del = 0
		    } else {  // randomize onset of exc.drv
			      interneuron[i].drv_interneuron.del = tdrv1 + rduni.repick()*(tdrv2-tdrv1) 
		    }
	      if (Icv_interneuron == 0) {							// random Iexc if Icv != 0 
			      Cellvar_IN.x[i] = Imu_interneuron
		    } else {
			      Cellvar_IN.x[i] = rdnorm.repick()*Icv_interneuron*Imu_interneuron+Imu_interneuron 
		    }                          
		    interneuron[i].change_Imu_interneuron(Cellvar_IN.x[i])
		}
}

proc initdrv_PN() {
    for i = 0,nPN-1 {
        if (tdrv2 == 0) {						
			      principalneuron[i].drv_principalneuron.del = 0
		    } else {  // randomize onset of exc.drv
			      principalneuron[i].drv_principalneuron.del = tdrv1 + rduni.repick()*(tdrv2-tdrv1) 
		    }
	      if (Icv_principalneuron == 0) {							// random Iexc if Icv != 0 
			      Cellvar_PN.x[i] = Imu_principalneuron
		    } else {
			      Cellvar_PN.x[i] = rdnorm.repick()*Icv_principalneuron*Imu_principalneuron+Imu_principalneuron 
		    }
		    principalneuron[i].change_Imu_principalneuron(Cellvar_PN.x[i])
	  }
}

// _____________________________________________________________________________
//

// __________________________________________
// Initiate background synaptic drive

objref bgstim_IN[N_BGStim_IN], bgstim_PN[N_BGStim_PN]

proc initbgdrive() {
    // Interneurons ------------------------------------------------------------
    for i = 0,(N_BGStim_IN-1) {
        bgstim_IN[i] = new NetStim(0.5)
        bgstim_IN[i].interval = 1000/BGStim_f_IN
        bgstim_IN[i].number = BGStim_N_IN
        bgstim_IN[i].noise = BGStim_noise_IN
        bgstim_IN[i].start = tdrv1 + rduni.repick()*(tdrv2-tdrv1)
    }
  
    for j = 0,(nIN-1) {
        for k = 0,BGCon_N_IN-1 {
            if (BGCon_dd_IN > 0) {
                // a) Distance-dependent
                dist = int(rdnorm.repick*BGCon_SD_IN)
                while (dist>N_BGStim_IN/2) { dist = int(rdnorm.repick*BGCon_SD_IN) }
        
                groupsize = nIN/N_BGStim_IN        
                central_NetStim = int(j/groupsize)
        
                input = central_NetStim + dist
                while (input>=N_BGStim_IN) { input = input-N_BGStim_IN }
                while (input<0) { input = N_BGStim_IN+input }
            } else {
                // b) random: spatially uncorrelated input
                //input = int(rduni.repick()*N_BGStim_IN)
                input = j
            }
          
            s = rdnorm.repick()*BGSyn_strength_cv_IN*BGSyn_strength_IN+BGSyn_strength_IN
      
            interneuron[j].bgdrive(bgstim_IN[input],s)
        }
    }
  
    // Principal neurons ------------------------------------------------------------
    for i = 0,(N_BGStim_PN-1) {
        bgstim_PN[i] = new NetStim(0.5)
        bgstim_PN[i].interval = 1000/BGStim_f_PN
        bgstim_PN[i].number = BGStim_N_PN
        bgstim_PN[i].noise = BGStim_noise_PN
        bgstim_PN[i].start = tdrv1 + rduni.repick()*(tdrv2-tdrv1)
    }
  
    for j = 0,(nPN-1) {
        for k = 0,BGCon_N_PN-1 {
            if (BGCon_dd_PN > 0) {
                // a) Distance-dependent
                dist = int(rdnorm.repick*BGCon_SD_PN)
                while (dist>N_BGStim_PN/2) { dist = int(rdnorm.repick*BGCon_SD_PN) }
        
                groupsize = nPN/N_BGStim_PN        
                central_NetStim = int(j/groupsize)
        
                input = central_NetStim + dist
                while (input>=N_BGStim_PN) { input = input-N_BGStim_PN }
                while (input<0) { input = N_BGStim_PN+input }
            } else {
                // b) random: spatially uncorrelated input
                //input = int(rduni.repick()*N_BGStim_PN)
                input = j
            }
          
            s = rdnorm.repick()*BGSyn_strength_cv_PN*BGSyn_strength_PN+BGSyn_strength_PN
      
            principalneuron[j].bgdrive(bgstim_PN[input],s)
        }
    }
}

// _____________________________________________________________________________
//

// __________________________________________
// Initiate shaped input

proc init_INinj_input() { local i,c
    temshape_INinput()
    spashape_INinput()
    for i = 0,nIN-1 {
        // introduce some variability in the onset of the input injection:
        z = int(rduni.repick()*tvarINinj)+tINinj_on
        interneuron[i].inj_input(spaiinj_IN.x[i],z)  
    }
    if (spaiinj_IN.max() > 1) { printf("Interneuron input vector exceeds 1. Maximal value: %f\n",spaiinj_IN.max()) }
}

proc init_PNinj_input() { local i,c
    temshape_PNinput()
    spashape_PNinput()
    for i = 0,nPN-1 {
        // introduce some variability in the onset of the input injection:
        z = int(rduni.repick()*tvarPNinj)+tPNinj_on
        principalneuron[i].inj_input(spaiinj_PN.x[i],z)  
    }
    if (spaiinj_PN.max() > 1) { printf("Principalneuron input vector exceeds 1. Maximal value: %f\n",spaiinj_PN.max()) }
}


objref IN_signstim[IN_N_SIGNStim]

proc init_INsyn_input() { local i,half,j,k,input
    spashape_INinput()
    for i = 0,(IN_N_SIGNStim-1) {
        IN_signstim[i] = new NetStim(0.5)
        IN_signstim[i].interval = 1000/(IN_SIGNStim_f*spaiinj_IN.x[i])
        IN_signstim[i].number = IN_SIGNStim_N*spaiinj_IN.x[i]
        IN_signstim[i].noise = IN_SIGNStim_noise
        IN_signstim[i].start = tINinj_on + rduni.repick()*tvarINinj
    }

    half = (IN_SIGNCon_N-1)/2    
    for j = 0,(nIN-1) {
        for k = 0,IN_SIGNCon_N-1 {
            dist = k-half // Distance between the cell and the Stimulator. 
            input = int(j+dist)
            s = IN_SIGNSyn_strength
      
            interneuron[j].signinput(IN_signstim[input],s)
        }
    }
}

objref PN_signstim[PN_N_SIGNStim]

proc init_PNsyn_input() { local i,half,j,k,input
    spashape_PNinput()
    for i = 0,(PN_N_SIGNStim-1) {
        PN_signstim[i] = new NetStim(0.5)
        PN_signstim[i].interval = 1000/(PN_SIGNStim_f*spaiinj_PN.x[i])
        PN_signstim[i].number = PN_SIGNStim_N*spaiinj_PN.x[i]
        PN_signstim[i].noise = PN_SIGNStim_noise
        PN_signstim[i].start = tPNinj_on + rduni.repick()*tvarPNinj
    }

    half = (PN_SIGNCon_N-1)/2    
    for j = 0,(nPN-1) {
        for k = 0,PN_SIGNCon_N-1 {
            dist = k-half // Distance between the cell and the Stimulator. 
            input = int(j+dist)
            s = PN_SIGNSyn_strength
      
            principalneuron[j].signinput(PN_signstim[input],s)
        }
    }
}


proc initINinput() {
    if (IN_input_format < 2) {
        init_INinj_input()
    } else {
        init_INsyn_input()
    } 
}

proc initPNinput() {
    if (PN_input_format < 2) {
        init_PNinj_input()
    } else {
        init_PNsyn_input()
    } 
}

// _____________________________________________________________________________
//

Loading data, please wait...