Distance-dependent inhibition in the hippocampus (Strüber et al. 2017)

 Download zip file 
Help downloading and running models
Accession:229750
Network model of a hippocampal circuit including interneurons and principal cells. Amplitude and decay time course of inhibitory synapses can be systematically changed for different distances between connected cells. Various forms of excitatory drives can be administered to the network including spatially structured input.
Reference:
1 . Strüber M, Sauer JF, Jonas P, Bartos M (2017) Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus. Nat Commun 8:758 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Dentate gyrus;
Cell Type(s): Dentate gyrus granule GLU cell; Dentate gyrus basket cell;
Channel(s):
Gap Junctions: Gap junctions;
Receptor(s): GabaA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Gamma oscillations; Spatio-temporal Activity Patterns;
Implementer(s): Strüber, Michael [michael_strueber at hotmail.com];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; GabaA; Glutamate; Gaba; Glutamate;
/
DDnet
readme.txt
gap.mod
kaprox.mod *
kdrca1.mod *
km.mod *
na3n.mod *
net_hh_wbsh.mod
net_dd_ana.hoc
net_dd_emodel.hoc
net_dd_imodel.hoc
net_dd_params.hoc
net_dd_procs.hoc
net_dd_run.hoc
net_dd_vectors.hoc
                            
TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current --- M.Migliore Jun 1997
: modified to be used with cvode  M.Migliore 2001

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	sh = 24
	v (mV)
	celsius		(degC)
	gkabar=.008 (mho/cm2)
        vhalfn=11   (mV)
        vhalfl=-56   (mV)
        a0l=0.05      (/ms)
        a0n=0.05    (/ms)
        zetan=-1.5    (1)
        zetal=3    (1)
        gmn=0.55   (1)
        gml=1   (1)
	lmin=2  (mS)
	nmin=0.1  (mS)
	pw=-1    (1)
	tq=-40
	qq=5
	q10=5
	qtl=1
	ek
}


NEURON {
	SUFFIX kap
	USEION k READ ek WRITE ik
        RANGE gkabar,gka, sh
        GLOBAL ninf,linf,taul,taun,lmin
}

STATE {
	n
        l
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf      
        taul
        taun
        gka
}

INITIAL {
	rates(v)
	n=ninf
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	gka = gkabar*n*l
	ik = gka*(v-ek)

}


FUNCTION alpn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq-sh)/qq))
  alpn = exp(1.e-3*zeta*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq-sh)/qq))
  betn = exp(1.e-3*zeta*gmn*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl-sh)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl-sh)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
        l' =  (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1 + a)
        taun = betn(v)/(qt*a0n*(1+a))
	if (taun<nmin) {taun=nmin}
        a = alpl(v)
        linf = 1/(1+ a)
	taul = 0.26*(v+50-sh)/qtl
	if (taul<lmin/qtl) {taul=lmin/qtl}
}















Loading data, please wait...