Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)

 Download zip file 
Help downloading and running models
Accession:231427
This work (published in "Timed synaptic inhibition shapes NMDA spikes, influencing local dendritic processing and global I/O properties of cortical neurons", Doron et al, Cell Reports, 2017), examines the effect of timed inhibition over dendritic NMDA spikes on L5PC (Based on Hay et al., 2011) and CA1 cell (Based on Grunditz et al. 2008 and Golding et al. 2001).
Reference:
1 . Doron M, Chindemi G, Muller E, Markram H, Segev I (2017) Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell Rep 21:1550-1561 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions:
Receptor(s): NMDA; GabaA; AMPA;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Detailed Neuronal Models;
Implementer(s): Doron, Michael [michael.doron at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow; Gaba; Glutamate;
/
reproduction
readme.txt
ampa.mod
Ca_HVA.mod
Ca_LVAst.mod *
cad.mod *
cadiffus.mod
CaDynamics_E2.mod *
canmda.mod *
car.mod *
gabaa.mod *
gabab.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
nmda.mod *
ProbAMPA.mod
ProbAMPANMDA2_ratio.mod *
ProbUDFsyn2_lark.mod *
SK_E2.mod *
SKv3_1.mod *
SynExp5NMDA.mod *
cell1.asc *
cellmorphology.hoc *
create_data_for_figure_01.py
create_data_for_figure_02.py
create_data_for_figure_03.py *
create_data_for_figure_03_control.py
create_data_for_figure_03_Dt_10.py *
create_data_for_figure_03_Dt_40.py *
data_same_excitation.pickle
iniparameter.hoc
L5PCbiophys3.hoc
L5PCbiophys3_noActive.hoc
mosinit.hoc
plot_figure_01.py
plot_figure_02.py
plot_figure_03.py
plot_figure_04.py
plot_figure_05.py
plot_figure_06.py
spikes_num.pickle
spine.hoc
TTC.hoc
                            
TITLE Ca R-type channel with high threshold for activation

: HVA calcium channels are inserted in the spine head
: Activation and inactivation parameters taken from
: Foehring RC, Mermelstein PG, Song W, Ulrich S and Surmeier DJ
: Unique properities of R-type calcium currents in neucortical and neostriatal neurons
: J Neurophysiol (2000) 84: 2225 - 2236
:
: written by Lei Tian on 04/11/06 

NEURON {
	SUFFIX car
	USEION ca  WRITE ica
    RANGE gcabar, m, h, g, p, eca
	RANGE inf, fac, tau, k
	GLOBAL irtype
	EXTERNAL Area_canmda
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {	: parameters that can be entered when function is called in cell-setup
    v               (mV)
    celsius = 30	(degC)
	dt              (ms)
    gcabar = 0.351  (mho/cm2) : initialized conductance 
	eca = 10		(mV)      : Ca++ reversal potential was choosen to best fit the GHK between -40 and -10 mV	

	Area            (cm2)
	k = 1e-06		(mA/nA)

        }  

STATE {	m h }               

ASSIGNED {                  
	ica             (mA/cm2)
    inf[2]
	fac[2]
	tau[2]
	irtype
	g                       :R_type channel total conductance
	p
	
}

BREAKPOINT {
	SOLVE states
	ica = gcabar*m*m*m*h*(v - eca)
	irtype= -gcabar*m*m*m*h*(v - eca)
	g = gcabar*m*m*m*h*Area*1e6	:[uS]
	p = m*m*m*h
	}

INITIAL {
	Area = Area_canmda
    m = 0                               : initial activation parameter value
	h = 0.5                             : initial inactivation parameter value
	states()
	ica = gcabar*m*m*m*h*(v - eca)      : initial Ca++ current value
    irtype=-gcabar*m*m*m*h*(v - eca) 	: the ca current through R_type channel
	g = gcabar*m*m*m*h*Area*1e6 		:[uS]
	p = m*m*m*h
	}

PROCEDURE calcg() {
	mhn(v*1(/mV))
	m = m + fac[0]*(inf[0] - m)
	h = h + fac[1]*(inf[1] - h)
	}	

PROCEDURE states() {                    : exact when v held constant
	calcg()
	VERBATIM
	return 0;
	ENDVERBATIM
}

FUNCTION varss(v, i) {
	if (i==0) {
           varss = 1 / (1 + exp((v+14)/(-6.7)))	: Ca activation
	}
	else if (i==1) {    
        varss = 1/ (1 + exp((v+65)/(11.8)))     : Ca inactivation
	}
}

FUNCTION vartau(v, i) {
	if (i==0) {
           vartau = 3.6		: activation variable time constant 
        }
	else if (i==1) {
           vartau = 200		: inactivation variable time constant 
       }
	
}	

PROCEDURE mhn(v) {LOCAL a, b :rest = -70
:	TABLE inf, fac DEPEND dt, celsius FROM -100 TO 100 WITH 200
	FROM i=0 TO 1 {
		tau[i] = vartau(v,i)
		inf[i] = varss(v,i)
		fac[i] = (1 - exp(-dt/tau[i]))
	}
}



Loading data, please wait...