ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/231859.

Modelling the effects of short and random proto-neural elongations (de Wiljes et al 2017)

 Download zip file 
Help downloading and running models
Accession:231859
"To understand how neurons and nervous systems first evolved, we need an account of the origins of neural elongations: why did neural elongations (axons and dendrites) first originate, such that they could become the central component of both neurons and nervous systems? Two contrasting conceptual accounts provide different answers to this question. Braitenberg's vehicles provide the iconic illustration of the dominant input-output (IO) view. Here, the basic role of neural elongations is to connect sensors to effectors, both situated at different positions within the body. For this function, neural elongations are thought of as comparatively long and specific connections, which require an articulated body involving substantial developmental processes to build. Internal coordination (IC) models stress a different function for early nervous systems. Here, the coordination of activity across extended parts of a multicellular body is held central, in particular, for the contractions of (muscle) tissue. An IC perspective allows the hypothesis that the earliest proto-neural elongations could have been functional even when they were initially simple, short and random connections, as long as they enhanced the patterning of contractile activity across a multicellular surface. The present computational study provides a proof of concept that such short and random neural elongations can play this role. ..."
Reference:
1 . de Wiljes OO, van Elburg RAJ, Keijzer FA (2017) Modelling the effects of short and random proto-neural elongations. J R Soc Interface [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s): Abstract integrate-and-fire leaky neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Brian 2; Python;
Model Concept(s): Early evolution;
Implementer(s): de Wiljes, O. O. [otdewiljes at gmail.com];
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 18 04:21:02 2015

@author: oddman
"""
import os,json, cProfile, subprocess
#from SkinBrian import *
from ShapesOnAPlane import *
from matplotlib.font_manager import FontProperties
from matplotlib.figure import SubplotParams
from matplotlib.patches import Ellipse, Arrow
from matplotlib.lines import Line2D
import multiprocessing
import numpy as np

RAMONYCAJALCOUNT = 15

class SkinBrainComic:
    def __init__(self,fromTime,toTime,timeStep,networkTopology,
                 spikes,vizOutputDirPath):
        self.maxMs = max([
            max(spikeTrain+[0]) 
            for cell_i,spikeTrain 
            in spikes.items()
        ])
        self.fromTime = fromTime
        self.toTime = toTime
        self.timeStep = float(timeStep)
        self.spikes = spikes
        self.vizOutputDirPath = vizOutputDirPath
        self.networkTopology = networkTopology
#        print spikeSort(self.spikes.items())
        print self.maxMs
        self.maxTime = int(self.maxMs) + 1
        self.alignEvents()
    
    def alignEvents(self):
        ## the format of spikes produced by SingleRunDataReader is a list of
        ## lists, spike times of cells.
        ## the time of the last spike in ms/binsize, rounded up
        intervalCount = int(self.maxTime / self.timeStep) + 1
        self.cellsFiringPerMoment = dict((i,[]) for i in range(intervalCount))
        ## for every spike, put the cellindex in the appropriate time-bin
        [
            [
                self.cellsFiringPerMoment[int(spikeTime / self.timeStep)].append(cellIndex)
                for spikeTime
                in thisCellSpikes
            ]
            for cellIndex,thisCellSpikes
            in self.spikes.items()
        ]
#        print self.cellsFiringPerMoment
#        self.linksfiringpermoment = dict((i,[]) for i in range(self.maxtime))
#        [
#            [
#                self.linksfiringpermoment[int(moment/self.binsize)].append(link)
#                for moment
#                in momentlist
#            ]
#            for (link,momentlist)
#            in self.thisrun.firinglinks.items()
#        ]
    def run(self,orientation,outputFormat,CPUCount,autoplay):
        firstInterval = int(self.fromTime / self.timeStep)
        lastInterval = int(self.toTime / self.timeStep)
        plottedIntervals = range(firstInterval,lastInterval)
        print 'Plotting {0} frames.'.format(len(plottedIntervals))
        movieVizOutputDirPath = self.vizOutputDirPath + 'movie/'
        if os.path.exists(movieVizOutputDirPath):
            pass
        else:
            os.mkdir(movieVizOutputDirPath)
#        pool = multiprocessing.Pool(processes = CPUCount)
        frameArgumentList = [
            [   
                intervalKey,outputFormat,movieVizOutputDirPath,
                self.networkTopology,self.cellsFiringPerMoment
            ] 
            for intervalKey in plottedIntervals
        ]
        for frameArguments in frameArgumentList:
            sfp = multiprocessing.Process(
                target = singleFrame, 
                args = frameArguments
            )
            sfp.start()
            sfp.join()
#        pool.map(frameMultiprocessHelper,poolArgumentList)
        singleFrame(
            intervalKey,outputFormat,
            self.vizOutputDirPath,self.networkTopology,
            self.cellsFiringPerMoment,cellSize = .25, 
            links = 'ramon_y_cajal')
        os.chdir(movieVizOutputDirPath)
#        intervals = len(plottedIntervals)
        if outputFormat == 'png':
            if os.path.exists('./skinBrainMovie.avi'):
                os.remove('./skinBrainMovie.avi')
            ffmpegCommandList = [
                    'ffmpeg',
                    '-f',
                    'image2',
                    '-framerate',
                    '30',
                    '-pattern_type',
                    'sequence',
                    '-start_number',
                    '{0}'.format(firstInterval),
                    '-r',
                    '12',
                    '-i',
                    '%05dvector_wires.png',
                    'skinBrainMovie.avi'
            ]
            subprocess.call(ffmpegCommandList)
            mplayerCommandList = ['gnome-mplayer','skinBrainMovie.avi']
            if autoplay:
                subprocess.call(mplayerCommandList)
        
def singleFrame(
        intervalKey,outputFormat,outputDirPath,networkTopology,
        cellsFiringPerMoment,cellSize=.75,links = False
    ):    
    """A function producing a single wire-frame 2d-representation
    of a skin brain at a certain time in the simulation. 
    """
    print intervalKey
    timestr = "%05d"%(intervalKey)
    if links == 'all':
        linkstr = 'links_'
    elif links == 'ramon_y_cajal':
        linkstr = 'ramon_y_cajal_links_'
    else:
        linkstr = ''
    graphName = timestr+linkstr+'vector_wires.'+outputFormat
    if os.path.exists(outputDirPath+graphName):
        return graphName
    interCellDistance = 5.
    inch = 25.4 ## mm
    ## size should be relative to length (x) and circumference (y).
    figXSize = (networkTopology.networkParameters['length_circumference'][0]*interCellDistance*.5*sqrt(2)) / inch
    figYSize = (networkTopology.networkParameters['length_circumference'][1]*interCellDistance) / inch
    fig = figure(figsize=(figXSize,figYSize), subplotpars=SubplotParams(left=0,right=1,top=1,bottom=0))
#        nodes = [i for i in enumerate(self.coords2d)]
#        print str(moment)
    ax = fig.add_subplot(111,frame_on=False,label=intervalKey)
    nodes = [(cell.overallIndex,cell.flatCoordinates) for cell in networkTopology.cells]      
    if links == 'all' or links == 'ramon_y_cajal':
        if links == 'ramon_y_cajal':
            inCells = np.random.choice(networkTopology.cells,RAMONYCAJALCOUNT)
        for link in networkTopology.links:
            (origin,target) = (
                link.fromCell,
                link.toCell
            )
            if links == 'all' or (links == 'ramon_y_cajal' and origin in inCells):
                thisline = Line2D(
                    *zip(*[list(origin.flatCoordinates),list(target.flatCoordinates)]),
                    linewidth=1.5,
                    solid_capstyle = 'butt')
                ax.add_artist(thisline)
                thisline.set_clip_box(ax.bbox)
                thisline.set_color([0.8,0.8,0.8])  
    #                    print self.colourdict[link]
    #            linkprune.__delitem__(link)
                thisline.set_zorder(1)
#            otherlines = [
#                Line2D(
#                    *zip(*[list(origin),list(target)]),
#                    linewidth=1.5,
#                    solid_capstyle = 'butt')
#                for (link,(origin,target)) 
#                in linkprune.items()]
#            for e in otherlines:
#                ax.add_artist(e)
#                e.set_clip_box(ax.bbox)
#                e.set_color(linkcolour)
#                e.set_zorder(0)
  
    ellipses = [(i,Ellipse(xy,cellSize,cellSize)) for (i,xy) in nodes]
    for (i,e) in ellipses:
        ax.add_artist(e)
        e.set_clip_box(ax.bbox)
        if i not in cellsFiringPerMoment[intervalKey]:
            e.set_color([0.9,0.9,0.9])
        else:
            e.set_color([0.5,0.0,0.0])
        if links == 'all':
             e.set_color([0.4,0.4,0.4])
        e.set_zorder(2)
    ax.tick_params(top=False,bottom=False,left=False,right=False)
    ax.set_xlim(-1, max([x for (i,(x,y)) in nodes]) + 1)
    ax.set_ylim(-1, max([y for (i,(x,y)) in nodes]) + 1)
    ax.set_yticklabels('')
    ax.set_xticklabels('')
#        linkstr = "_links" + repr(links)
    graphName = timestr+linkstr+'vector_wires.'+outputFormat
    savefig(outputDirPath+graphName,format=outputFormat)
    close('all')
#    fig.show()
    return graphName

def generateComic(
        fromTime,toTime,timeStep,targetFolder,topologyCachePath,runIndex,
        CPUCount,autoplay=True,show=True,outputFormat='png'
    ):
#    print os.listdir(targetFolder)
    metadataPath = targetFolder.strip('/') + '/metadata.json'
    vizOutputDirPath = targetFolder.strip('/') + '/viz_{0}/'.format(runIndex)
    if os.path.exists(vizOutputDirPath):
        pass
    else:
        print os.getcwd()
        os.mkdir(vizOutputDirPath)
    with open(metadataPath,'r') as metadataFile:
        metadata = json.load(metadataFile)
#        print self.metadata['0']['cellModelParameters']
    key = str(runIndex)
    networkParameters = metadata[key]['networkParameters']
    networkType = networkParameters['networkType']
    networkTopology = NetworkTopology(
        networkType,
        cacheDir = topologyCachePath
    )
    networkTopology.generate(
        networkParameters,
        cache=True
    )
#    print networkTopology.networkParameters
    spikeFilePath = targetFolder.strip('/') + '/spikefile_'+key+'.json'
    with open(spikeFilePath,'r') as spikeFile:
        spikes = dict(json.load(spikeFile))
    skinBrainComic = SkinBrainComic(fromTime,toTime,timeStep,networkTopology,spikes,vizOutputDirPath)
    skinBrainComic.run('vertical',outputFormat,CPUCount,autoplay)
    
        
if __name__ == '__main__':
    CPUCount = 1
#    thisRunFolder = './output/'+max(os.listdir('./output/'))
    thisRunFolder = './output/fullRun'
    print thisRunFolder
    generateComic(0,1000,2,thisRunFolder,'./topologyCaches/',1930,CPUCount,autoplay=False,outputFormat='png')

Loading data, please wait...