"Inhibition is known to influence the forward-directed flow of information within neurons. However, also regulation of backward-directed signals, such as backpropagating action potentials (bAPs), can enrich the functional repertoire of local circuits. Inhibitory
control of bAP spread, for example, can provide a switch for the plasticity of excitatory synapses. Although such a mechanism is
possible, it requires a precise timing of inhibition to annihilate bAPs without impairment of forward-directed excitatory information flow. Here, we propose a specific learning rule for inhibitory synapses to automatically generate the correct timing to gate bAPs in pyramidal cells when embedded in a local circuit of feedforward inhibition. Based on computational modeling of multi-compartmental neurons with physiological properties, we demonstrate that a learning rule with anti-Hebbian shape can establish the
required temporal precision. ..."
Reference:
1 .
Wilmes KA, Schleimer JH, Schreiber S (2017) Spike-timing dependent inhibitory plasticity to learn a selective gating of backpropagating action potentials. Eur J Neurosci 45:1032-1043 [PubMed]
|