Morphological determinants of dendritic arborization neurons in Drosophila larva (Nanda et al 2018)

 Download zip file 
Help downloading and running models
Accession:238916
"Pairing in vivo imaging and computational modeling of dendritic arborization (da) neurons from the fruit fly larva provides a unique window into neuronal growth and underlying molecular processes. We image, reconstruct, and analyze the morphology of wild-type, RNAi-silenced, and mutant da neurons. We then use local and global rule-based stochastic simulations to generate artificial arbors, and identify the parameters that statistically best approximate the real data. We observe structural homeostasis in all da classes, where an increase in size of one dendritic stem is compensated by a reduction in the other stems of the same neuron. Local rule models show that bifurcation probability is determined by branch order, while branch length depends on path distance from the soma. Global rule simulations suggest that most complex morphologies tend to be constrained by resource optimization, while simpler neuron classes privilege path distance conservation. Genetic manipulations affect both the local and global optimal parameters, demonstrating functional perturbations in growth mechanisms."
Reference:
1 . Nanda S, Das R, Bhattacharjee S, Cox DN, Ascoli GA (2018) Morphological determinants of dendritic arborization neurons in Drosophila larva. Brain Struct Funct 223:1107-1120 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Drosophila dendritic arborization neurons;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Java;
Model Concept(s): Influence of Dendritic Geometry; Homeostasis; Bifurcation;
Implementer(s):
/
StatisticalDeterminantModel
.settings
bak
bin
classes
src
readme.txt
FileList.prn
                            
# input for lnded 2.0
INPUT
16
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\ddaC\S7-D-C4.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\ddaC\Class4-3-noddaE.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\ddaC\C4S5.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\ddaC\S-5-D-C4.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\ddaC\S5-D-C4-1.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\ddaC\S5-D-C4-2.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\v'ada\c4s9v.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\v'ada\WT-C4-12.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\v'ada\S4-L-C4.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\v'ada\S5-V-C4.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\v'ada\S9-L-C4.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\v'ada\WT-C4-20.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\v'ada\WT-MARCM-CIV-M1.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\vdaB\S4-L-C4-1.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\vdaB\S4-V-C4.CNG.swc
C:\Users\I\Documents\project\Cox lab Neurons\Modellling Sataset_SinglePoint\Wild-type\Class IV\vdaB\WT-C4-11.CNG.swc


BINNING
150
TYPETODO
3
MINRAD
.075
SEED
1
DEBUGGING
FALSE
SWCOUT
FALSE
PERCENTSTEP
0.1

Loading data, please wait...