Advanced search
SenseLab
SimToolDB
ModelDB Help
User account
Login
Register
Find models by
Model name
First author
Each author
Region(circuits)
Find models for
Cell type
Current
Receptor
Gene
Transmitters
Concept
Simulators
Methods
Find models of
Realistic Networks
Neurons
Electrical synapses (gap junctions)
Chemical synapses
Ion channels
Neuromuscular junctions
Axons
Pathophysiology
Other resources
SenseLab mailing list
ModelDB related resources
Computational neuroscience ecosystem
Models in a git repository
Vibration-sensitive Honeybee interneurons (Ai et al 2017)
Help downloading and running models
Model Information
Model File
Citations
Accession:
239413
"Female honeybees use the “waggle dance” to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee (Apis mellifera). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee."
Reference:
1 .
Ai H, Kai K, Kumaraswamy A, Ikeno H, Wachtler T (2017) Interneurons in the Honeybee Primary Auditory Center Responding to Waggle Dance-Like Vibration Pulses.
J Neurosci
37
:10624-10635
[
PubMed
]
Model Information
(Click on a link to find other models with that property)
Model Type:
Realistic Network;
Brain Region(s)/Organism:
Cell Type(s):
Abstract integrate-and-fire adaptive exponential (AdEx) neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment:
Brian 2 (web link to model);
Model Concept(s):
Invertebrate;
Activity Patterns;
Audition;
Implementer(s):
(located via links below)
Unnamed repository; edit this file 'description' to name the repository.
Loading data, please wait...