CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)

 Download zip file 
Help downloading and running models
Accession:240960
This paper shows that persistent sodium current critically contributes to the subthreshold nonlinear dynamics of CA1 pyramidal neurons and promotes rapidly reversible conversion between place-cell and silent-cell in the hippocampus. A simple model built with realistic axo-somatic voltage-gated sodium channels in CA1 (Carter et al., 2012; Neuron 75, 1081–1093) demonstrates that the biophysics of persistent sodium current is sufficient to explain the synaptic amplification effects. A full model built previously (Grienberger et al., 2017; Nature Neuroscience, 20(3): 417–426) with detailed morphology, ion channel types and biophysical properties of CA1 place cells naturally reproduces the steep voltage dependence of synaptic responses.
Reference:
1 . Hsu CL, Zhao X, Milstein AD, Spruston N (2018) Persistent sodium current mediates the steep voltage dependence of spatial coding in hippocampal pyramidal neurons Neuron 99:1-16
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Channel/Receptor; Neuron or other electrically excitable cell; Axon; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Abstract single compartment conductance based cell;
Channel(s): I Sodium; I A; I M; I h; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Membrane Properties; Synaptic Integration; Synaptic Amplification; Place cell/field; Active Dendrites; Conductance distributions; Detailed Neuronal Models; Electrotonus; Markov-type model;
Implementer(s): Hsu, Ching-Lung [hsuc at janelia.hhmi.org]; Milstein, Aaron D. [aaronmil at stanford.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I A; I K; I M; I h; I Sodium; Glutamate;
/
HsuEtAl2018
FullModel
data
morphologies
README.md
ampa_kin.mod *
exp2EPSC.mod
gaba_a_kin.mod *
h.mod
kad.mod *
kap.mod *
kdr.mod *
km2.mod
nas.mod
nax.mod
nmda_kin5.mod *
pr.mod *
vecevent.mod *
batch_nap_EPSC_amplification.sh
batch_nap_EPSP_amplification.sh
batch_nap_EPSP_amplification_IO.sh
function_lib.py
install notes.txt
plot_nap_EPSC_amplification.py
plot_nap_EPSP_amplification.py
plot_nap_EPSP_amplification_IO.py
plot_results.py
simulate_nap_EPSC_amplification.py
simulate_nap_EPSP_amplification.py
simulate_nap_EPSP_amplification_IO.py
specify_cells.py
visualize_ion_channel_gating_parameters.py
                            
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997
: Aaron Milstein modified in 2015:
: removed q10: was set to 1, so was unnecessary

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (mol) = (1)
}

NEURON {
        SUFFIX kdr
        USEION k READ ek WRITE ik
        RANGE gkdr,gkdrbar,ik
        RANGE ninf,taun
        GLOBAL nscale
}

PARAMETER {
        temp    = 24            (degC)
        gkdrbar = 0.003         (mho/cm2)
        vhalfn  = 13            (mV)
        a0n     = 0.02          (/ms)
        zetan   = -3            (1)
        gmn     = 0.7           (1)
        nmin    = 2             (ms)
        nscale  = 1
}

STATE {
        n
}

ASSIGNED {
        v                       (mV)
        ik                      (mA/cm2)
        ninf
        gkdr                    (mho/cm2)
        taun                    (ms)
        ek                      (mV)
        celsius                 (degC)
}

INITIAL {
        rates(v)
        n=ninf
}        

BREAKPOINT {
        SOLVE states METHOD cnexp
        gkdr = gkdrbar*n
        ik = gkdr*(v-ek)
}

DERIVATIVE states {
        rates(v)
        n' = (ninf-n)/taun
}

FUNCTION alpn(v(mV)) {
        alpn = exp(zetan*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/degC/mol)*(273.16(degC)+celsius))) 
}

FUNCTION betn(v(mV)) {
        betn = exp(zetan*gmn*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/degC/mol)*(273.16(degC)+celsius))) 
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(a0n*(1+a))
        if (taun<nmin) {taun=nmin}
        taun=taun/nscale
}

Loading data, please wait...