Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)

 Download zip file 
Help downloading and running models
Accession:241240
"Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420 –2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. ..."
Reference:
1 . Holmes WR, Huwe JA, Williams B, Rowe MH, Peterson EH (2017) Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity. J Neurophysiol 117:1969-1986 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon;
Brain Region(s)/Organism: Turtle vestibular system;
Cell Type(s): Vestibular neuron; Turtle vestibular neuron;
Channel(s): I A; I h; I K; I K,Ca; I L high threshold; I M; I Na,t; I_KD;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Activity Patterns;
Implementer(s): Holmes, William [holmes at ohio.edu];
Search NeuronDB for information about:  I Na,t; I L high threshold; I A; I K; I M; I h; I K,Ca; I_KD;
TITLE CaL channel
: Calcium Channel with Goldman- Hodgkin-Katz permeability


NEURON {
	SUFFIX 	caL
	USEION 	ca READ cai, cao WRITE ica
	RANGE 	pbar, p, i
	GLOBAL	inf_n, tau_n, inf_h, tau_h, inf_c, tau_c
}

UNITS {
	(molar) = (1/liter)
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)


	:FARADAY = 96520 (coul)
	:R = 8.3134 (joule/degC)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
}

PARAMETER {
   : inf_n parameters
	pbar	= 0.241e-3	(cm/s)	: Maximum Permeability
	gates_n       = 2 
  	vhalf_n       = -30.1 (mV)
  	slope_n       = -4.77  (mV)
  	needAdj = 1
  	vhalfA_n      = 0 (mV)                : adjusted for ngate power; Set in ngate_adjust()
  	slopeA_n      = 0 (mV)
  	v5_adj        = 0 (mV)                : for return values in ngate_adjust
  	slp_adj       = 0 (mV)

  : tau_n parameters
  	tauA_n        = 1.5  (ms)
  	tauDv_n       = 0     (mV)    : Delta to vhalf_n
  	tauG_n        = 0.5          : Left-right bias. range is (0,1)
  	tauF_n        = 0             : Up-Down bias. range is ~ -3.5(cup-shape), -3(flat), 0(from k), 1(sharper)
  	tau0_n        = 0   (ms)    : minimum tau


  : inf_h parameters
	vhalf_h	= 	-59.5	(mV)
	slope_h	=	10	(mV)
:	vhat_h	=	-59.5	(mV)
:	shat_h	=	10	(mV)
	tauA_h	=	200	(ms)
	tauG_h	=	0.5		: Left-right bias.  range (0,1)
	tau0_h	=	0	(ms)
	tauF_h	=	0
	tauDv_h	=	0

	hill_c	=	2
	K_c		=	.001	(mM)
	tauA_c	=	10	(ms)
	tau0_c	=	10	(ms)

}

ASSIGNED { 
	celsius		(degC) : 32
	v		(mV)
	i		(mA/cm2)
	ica		(mA/cm2)
	cai		(mM)
	cao		(mM)
	p		(cm/s)
	inf_n
	tau_n		(ms)
	inf_h
	tau_h		(ms)
	inf_c
	tau_c		(ms)
}

STATE {
	n	: activation
	h	: inactivation
	c	: calcium dependent inactivation
}		

BREAKPOINT {
	SOLVE states METHOD cnexp
	p 	= 0
	p 	= pbar * n^2 * h * c
	i 	= p * ghk(v, cai, cao)
	ica 	= i
}

INITIAL {
	rates(v, cai)
	n = inf_n
	h = inf_h
	c = inf_c
}

DERIVATIVE states {
	rates(v, cai)
	n' = ( inf_n - n) / tau_n
	h' = ( inf_h - h) / tau_h
	c' = ( inf_c - c) / tau_c
}

PROCEDURE rates (v (mV), cai ( mM)) {
  if( needAdj > 0 ){
    needAdj = 0
    ngate_adjust( gates_n, vhalf_n, slope_n )
    vhalfA_n = v5_adj
    slopeA_n = slp_adj
  }
  	inf_n = Boltzmann( v, vhalfA_n, slopeA_n )
  	tau_n = BorgMod_tau( v, vhalfA_n, slopeA_n, tau0_n, tauA_n, tauG_n, tauF_n, tauDv_n )
	inf_h = 1 / (1 + exp((v - vhalf_h)/slope_h))
	tau_h = tau0_h + tauA_h*4*sqrt(tauG_h * (1 - tauG_h))/(exp(-(v - vhalf_h)/slope_h*(1 - tauG_h)) + exp((v - vhalf_h)/slope_h*tauG_h))
	inf_c = 1/(1 + (cai/K_c)^hill_c)
	tau_c = tau0_c + tauA_c/(1 + (cai/K_c)^hill_c)
	
}
FUNCTION Boltzmann( v (mV), v5 (mV), s (mV) ){
  Boltzmann = 1 / (1 + exp( (v - v5) / s ))
}

FUNCTION BorgMod_tau( v (mV), v5 (mV), s (mV), tau0 (ms), tauA (ms), tauG, tauF, tauDv (mV) ) (ms) {
  LOCAL kc, kr, Dv, wr, kf

:  kr = 1000
:  wr = 1000
  Dv = (v - ( v5 + tauDv ))
:  kc =  kr * 10^tauF / s *1(mV)
  kf =  10^tauF

  BorgMod_tau = tau0 + tauA * 4 * sqrt( tauG * (1-tauG))
                / ( exp( - Dv *(1-tauG)*kf/s ) + exp( Dv *tauG*kf/s ))
}

FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {
	LOCAL z, eci, eco
	z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
	eco = co*efun(z)
	eci = ci*efun(-z)
	:high cao charge moves inward
	:negative potential charge moves inward
	ghk = (.001)*2*FARADAY*(eci - eco)
}

FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}

: Boltzmann's inverse
FUNCTION Boltz_m1( x, v5 (mV), s (mV) ) (mV) {
  Boltz_m1 = s * log( 1/x - 1 ) + v5
}

: Find parameters for a Boltzmann eq that when taken to the ngate power matches one with a single power
: return result in v5_adj and slp_adj
: We solve for exact match on two points
PROCEDURE ngate_adjust( ng, vh (mV), slp (mV) ) {
  LOCAL x1, x2, v1, v2
  x1 = 0.3
  x2 = 0.7
  v1 = Boltz_m1( x1, vh, slp )
  v2 = Boltz_m1( x2, vh, slp )
  slp_adj = (v2 - v1)/( log( (1/x2)^(1/ng) - 1 ) - log( (1/x1)^(1/ng) - 1 ) )
  v5_adj = v1 - slp_adj * log( 1 / x1^(1/ng) - 1 )
}

Loading data, please wait...