Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)

 Download zip file 
Help downloading and running models
Accession:241240
"Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420 –2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. ..."
Reference:
1 . Holmes WR, Huwe JA, Williams B, Rowe MH, Peterson EH (2017) Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity. J Neurophysiol 117:1969-1986 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon;
Brain Region(s)/Organism: Turtle vestibular system;
Cell Type(s): Vestibular neuron; Turtle vestibular neuron;
Channel(s): I A; I h; I K; I K,Ca; I L high threshold; I M; I Na,t; I_KD;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Activity Patterns;
Implementer(s): Holmes, William [holmes at ohio.edu];
Search NeuronDB for information about:  I Na,t; I L high threshold; I A; I K; I M; I h; I K,Ca; I_KD;
{load_file("nrngui.hoc")}
objectvar save_window_, rvp_
objectvar scene_vector_[4]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List()  scene_list_ = new List()}
{pwman_place(0,0,0)}
{
save_window_ = new Graph(0)
save_window_.size(0,1000,-80,40)
scene_vector_[2] = save_window_
{save_window_.view(0, -80, 1000, 120, 1117, 82, 300.6, 200.8)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("iseg.v(.5)", 1, 1, 0.8, 0.9, 2)
}
{
save_window_ = new Graph(0)
save_window_.size(0,41,-61.5,-59.1)
scene_vector_[3] = save_window_
{save_window_.view(0, -61.5, 41, 2.4, 1113, 444, 300.6, 200.8)}
graphList[0].append(save_window_)
save_window_.save_name("graphList[0].")
save_window_.addexpr("node[4].v(0.5)", 1, 1, 0.65, 0.8, 2)
}
{
xpanel("Parameters",0)
xbutton("Constant gsyn max","weig(400)")
xbutton("Scale gsyn by diam","sw_by_diam()")
xvalue("Cell 5=MES 1=LES 2=Striola 72=Juxta","ifn",1,"change_node()",0,0)
xbutton("Plot HC EPSPs","erase() keep_lines() plot_allhc() keep_lines()")
Prate=20
xvalue("Poisson input rate","Prate",1,"rate(Prate)",0,0)
xbutton("Run to get cv","erase() arun1()")
xpanel(740,680)
}
objectvar scene_vector_[1]
{doNotify()}

Loading data, please wait...