Role of afferent-hair cell connectivity in determining spike train regularity (Holmes et al 2017)

 Download zip file 
Help downloading and running models
Accession:241240
"Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420 –2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. ..."
Reference:
1 . Holmes WR, Huwe JA, Williams B, Rowe MH, Peterson EH (2017) Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity. J Neurophysiol 117:1969-1986 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon;
Brain Region(s)/Organism: Turtle vestibular system;
Cell Type(s): Vestibular neuron; Turtle vestibular neuron;
Channel(s): I A; I h; I K; I K,Ca; I L high threshold; I M; I Na,t; I_KD;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Activity Patterns;
Implementer(s): Holmes, William [holmes at ohio.edu];
Search NeuronDB for information about:  I Na,t; I L high threshold; I A; I K; I M; I h; I K,Ca; I_KD;
COMMENT
  ================================================================================
   Random number generator routines
 
   from C recipes Chapter 7. pp 204 ff.
   and Knuth, Seminumerical algs
   Adapted by Jose Ambros-Ingerson jose@kiubo.net

  ================================================================================
ENDCOMMENT

NEURON {
  SUFFIX nothing
}

VERBATIM
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h> /* contains MAXLONG */

/* Michael Hines fix for cygwin on mswin */
#if !defined(MAXLONG)
#include <limits.h>
#define MAXLONG LONG_MAX
#endif

static int  dev0_first = 1;
static long dev0_seed;

extern double du_dev0();
extern double du_dev( double min, double max );
extern int iu_dev( int min, int max );
extern double dexp_dev0();
extern double dexp_dev( double lambda );
extern double dgauss_dev0();
extern double dgauss_dev( double mean, double sdev );
extern int igeom_dev( double pg );
double ran2(long*);	/* ran2 not to be used elsewhere */

ENDVERBATIM

: ================================================================================
: set dev0_seed; we assume seed is positive. If not ran2 will check and correct
: make accesible from hoc 
FUNCTION set_dev0_seed( seed ){
VERBATIM
  dev0_first = 0;
  dev0_seed = -1 * (long) _lseed;
  ran2( &dev0_seed );
ENDVERBATIM
  set_dev0_seed = 1
}

VERBATIM
/* ================================================================================
   double uniform deviate in (0,1)
 ================================================================================ */
double du_dev0(){
  double r2;
  if( dev0_first ){
    dev0_first = 0;
    dev0_seed = 1234;
  }
  r2 = ran2( &dev0_seed );
  return r2;
}
ENDVERBATIM

VERBATIM
/* ================================================================================
   return a uniform deviate in (min,max)
   ================================================================================ */
double du_dev( double min, double max )
{
  return( min + (max-min)*du_dev0() );
}

/* ================================================================================
   return an integer uniform deviate in [min,max]
   ================================================================================ */
int iu_dev( int min, int max )
{
  return( (int)((double)min + (double)(max-min+1)*du_dev0()) );
}

/* ================================================================================
   Returns an exponentially distributed, positive random deviate of unit mean,
   using du_dev1 as the source of uniform deviates
   ================================================================================ */
double dexp_dev0(){
  double dum; 
  do dum=du_dev0(); while ( dum==0.0);
  return( -log( dum ));
}

/* ================================================================================
   p(x) = lambda e^{-lambda x}
   ================================================================================ */
double dexp_dev( double lambda )
{
  return( dexp_dev0()/lambda );
}

/*======================================================================
  generate pseudorandom numbers according to normal distribution with
  mean 0 and std dev 1.
  We use algorithm C, page 117 of Knuth's Seminumerical Algorithms
  ======================================================================*/
double dgauss_dev0()
{
  static int    NotHave=1;
  static double X2;
  double        V1, V2, S, LS;

  if( NotHave ) {
    NotHave = 0;
    do {
      V1 = 2.0 * du_dev0() - 1.0;
      V2 = 2.0 * du_dev0() - 1.0;
    } while( (S = V1*V1 + V2*V2) > 1.0 );

    LS = sqrt( (-2.0 * log( S )) / S );
    X2 = V2 * LS;
    return( V1 * LS );
  }
  else {
    NotHave = 1;
    return( X2 );
  }
}

/*======================================================================
  generate pseudorandom numbers according to normal distribution with
  mean mean and std dev sdev.
  We use algorithm C, page 117 of Knuth's Seminumerical Algorithms
  ======================================================================*/
double dgauss_dev( double mean, double sdev )
{
  return( dgauss_dev0()*sdev + mean );
}

/*======================================================================
  generate pseudorandom numbers according to a geometic distribution
  with prob 0<pg<=1
  ======================================================================*/
int igeom_dev( double pg ){
  int ig;
  ig = 1;
  while( pg < du_dev0() && pg<=1.0 ) ig++;
  return( ig );
}

/* ================================================================================
   From Numerical Recipes 
  Long period (2> 2 x 10^18) random number generator of L'Ecuyer with Bays-Durham shuffle
  and added safeguards. Returns a uniform deviate in (0.0,1.0). 
    Call with idum a negative integer to initialize; thereafter, do not alter idum
  between succesive deviates in a sequence. 
    RNMX should approximate the largest floating point that is less than 1
 ================================================================================ */
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)

double ran2(long *idum)
{
  int j;
  long k;
  static long idum2=123456789;
  static long iy=0;
  static long iv[NTAB];
  double temp;
  
  if (*idum <= 0) {			/* Initialize */
    if (-(*idum) < 1) *idum=1;		/* Be sure to prevent idum = 0 */
    else *idum = -(*idum);
    idum2=(*idum);
    for (j=NTAB+7;j>=0;j--) {		/* Load shuffle table (after 8 warm-ups) */
      k=(*idum)/IQ1;
      *idum=IA1*(*idum-k*IQ1)-k*IR1;
      if (*idum < 0) *idum += IM1;
      if (j < NTAB) iv[j] = *idum;
    }
    iy=iv[0];
  }
  k=(*idum)/IQ1;			/* Start here when not initializing */
  *idum=IA1*(*idum-k*IQ1)-k*IR1;
  if (*idum < 0) *idum += IM1;
  k=idum2/IQ2;
  idum2=IA2*(idum2-k*IQ2)-k*IR2;
  if (idum2 < 0) idum2 += IM2;
  j=iy/NDIV;
  iy=iv[j]-idum2;
  iv[j] = *idum;
  if (iy < 1) iy += IMM1;
  if ((temp=AM*iy) > RNMX) return RNMX;
  else return temp;
}

#undef IM1
#undef IM2
#undef AM
#undef IMM1
#undef IA1
#undef IA2
#undef IQ1
#undef IQ2
#undef IR1
#undef IR2
#undef NTAB
#undef NDIV
#undef EPS
#undef RNMX
ENDVERBATIM

Loading data, please wait...