Convergence regulates synchronization-dependent AP transfer in feedforward NNs (Sailamul et al 2017)

 Download zip file 
Help downloading and running models
Accession:241979
We study how synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. We implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.
Reference:
1 . Sailamul P, Jang J, Paik SB (2017) Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks. J Comput Neurosci 43:189-202 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Synapse;
Brain Region(s)/Organism:
Cell Type(s): Hodgkin-Huxley neuron;
Channel(s): I Sodium; I Potassium; I T low threshold; I Cl, leak;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Synchronization; Oscillations; Action Potentials; Activity Patterns; Information transfer; Synaptic Convergence;
Implementer(s): Sailamul, Pachaya [pachaya_sailamul at brown.edu]; Jang, Jaeson ; Paik, Se-Bum ;
Search NeuronDB for information about:  I T low threshold; I Sodium; I Potassium; I Cl, leak;
166
622	811
625	710
625	830
628	673
628	730
631	692
632	789
633	653
633	771
634	853
634	873
636	633
638	752
643	831
644	812
647	712
649	674
650	731
651	694
652	655
652	793
652	874
653	774
654	855
655	754
656	634
660	836
665	816
668	713
669	795
670	675
671	694
671	878
672	656
672	732
672	753
675	774
676	634
676	859
677	838
686	803
686	820
689	713
689	750
690	675
690	880
692	732
693	657
693	694
694	786
696	637
696	768
697	862
698	844
705	828
707	807
710	713
710	750
711	656
711	676
714	694
714	870
715	730
715	786
717	766
718	635
718	849
723	828
728	807
729	654
731	743
732	676
732	717
732	871
734	696
734	786
739	633
739	766
739	854
740	836
747	816
748	667
748	731
749	795
751	877
752	646
752	752
753	708
755	689
757	775
760	837
760	858
761	627
765	816
767	669
767	718
769	796
770	759
771	650
773	738
774	696
780	780
780	845
780	867
781	634
781	824
783	678
786	719
788	758
788	804
790	659
794	740
795	701
797	831
797	880
799	788
799	855
801	642
803	769
804	622
804	683
807	726
807	813
811	665
813	708
813	752
813	840
813	871
819	797
821	650
822	778
823	631
824	692
824	735
824	854
825	826
829	674
831	717
831	761
835	809
840	744
840	785
840	840
840	866
841	657
843	701
844	637
847	683
850	726
851	769
852	824
853	799
853	855
858	751
859	708
861	667
862	647
864	625
865	782
866	840
868	690
868	811
869	736
869	867
874	718
875	761

Loading data, please wait...