ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/244412.

STDP and BDNF in CA1 spines (Solinas et al. 2019)

 Download zip file 
Help downloading and running models
Accession:244412
Storing memory traces in the brain is essential for learning and memory formation. Memory traces are created by joint electrical activity in neurons that are interconnected by synapses and allow transferring electrical activity from a sending (presynaptic) to a receiving (postsynaptic) neuron. During learning, neurons that are co-active can tune synapses to become more effective. This process is called synaptic plasticity or long-term potentiation (LTP). Timing-dependent LTP (t-LTP) is a physiologically relevant type of synaptic plasticity that results from repeated sequential firing of action potentials (APs) in pre- and postsynaptic neurons. T-LTP is observed during learning in vivo and is a cellular correlate of memory formation. T-LTP can be elicited by different rhythms of synaptic activity that recruit distinct synaptic growth processes underlying t-LTP. The protein brain-derived neurotrophic factor (BDNF) is released at synapses and mediates synaptic growth in response to specific rhythms of t-LTP stimulation, while other rhythms mediate BDNF-independent t-LTP. Here, we developed a realistic computational model that accounts for our previously published experimental results of BDNF-independent 1:1 t-LTP (pairing of 1 presynaptic with 1 postsynaptic AP) and BDNF-dependent 1:4 t-LTP (pairing of 1 presynaptic with 4 postsynaptic APs). The model explains the magnitude and time course of both t-LTP forms and allows predicting t-LTP properties that result from altered BDNF turnover. Since BDNF levels are decreased in demented patients, understanding the function of BDNF in memory processes is of utmost importance to counteract Alzheimer’s disease.
Reference:
1 . Solinas SMG, Edelmann E, Leßmann V, Migliore M (2019) A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP. PLoS Comput Biol 15:e1006975 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I_KD; I K; I h; I A; I Calcium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Facilitation; Long-term Synaptic Plasticity; Short-term Synaptic Plasticity; STDP;
Implementer(s): Solinas, Sergio [solinas at unipv.it]; Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I Na,t; I A; I K; I h; I Calcium; I_KD; Glutamate;
"""
Wrapper classes to make working with NEURON easier.

Author: Andrew P. Davison, UNIC, CNRS
"""

__version__ = "0.3.0"

from neuron import nrn, h, hclass
import h5py as h5
import numpy as np
from functools import reduce

h.load_file('stdrun.hoc')

PROXIMAL = 0
DISTAL = 1

class Mechanism(object):
    """
    Examples:
    >>> leak = Mechanism('pas', {'e': -65, 'g': 0.0002})
    >>> hh = Mechanism('hh')
    """
    def __init__(self, name, **parameters):
        self.name = name
        self.parameters = parameters

    def insert_into(self, section):
        section.insert(self.name)
        for name, value in list(self.parameters.items()):
            for segment in section:
                mech = getattr(segment, self.name)
                setattr(mech, name, value)


class Section(nrn.Section):
    """
    Examples:
    >>> soma = Section(L=30, diam=30, mechanisms=[hh, leak])
    >>> apical = Section(L=600, diam=2, nseg=5, mechanisms=[leak],
    ...                  parent=soma, connection_point=DISTAL)
    """
    
    def __init__(self, name, L, diam, nseg=1, Ra=100, cm=1,
                 mechanisms=[], parent=None,
                 connection_point=DISTAL,
                 point_processes = [],
                 records=[]):
        nrn.Section.__init__(self)
        # Set human readable name
        self.Name = name
        # set geometry
        self.L = L
        self.diam = diam
        self.nseg = nseg
        # set cable properties
        self.Ra = Ra
        self.cm = cm
        # connect to parent section
        if parent:
            self.connect(parent, connection_point, PROXIMAL)
        # add ion channels
        for mechanism in mechanisms:
            mechanism.insert_into(self)
        # add point processes
        for pp in point_processes:
            self.add_pointprocesses(pp['label'], pp['type'], locations=pp['locations'], parameters=pp['parameters'])
        # record variables
        self.records = {}
        self.records['time'] = {'val':h.Vector(),'unit':'ms'}
        self.records['time']['val'].record(h._ref_t, sec = self)

        for r in records:
            self.records['%s_%g'%(r['variable'],r['location'])] = {
                'unit':r['unit']}
            local_rec = self.records['%s_%g'%(r['variable'],r['location'])]
            if 'point_process' in list(r.keys()):
                local_rec['val'] = self.record_variable(r['variable'],
                                                           location=r['location'],
                                                           point_process = r['point_process'])
            else:
                local_rec['val'] = self.record_variable(r['variable'],
                                                           location=r['location'])

                
    def add_pointprocesses(self, label, type, locations=[0.5], parameters={}):
        if hasattr(self, label):
            raise Exception("Can't overwrite synapse labels (to keep things simple)")
        synapse_group = []
        for location in locations:
            synapse = getattr(h, type)(location, sec=self)
            for name, value in list(parameters.items()):
                setattr(synapse, name, value)
            synapse_group.append(synapse)
        if len(synapse_group) == 1:
            synapse_group = synapse_group[0]
        setattr(self, label, synapse_group)

    def add_synapses(self, label, type, locations=[0.5], **parameters):
        if hasattr(self, label):
            raise Exception("Can't overwrite synapse labels (to keep things simple)")
        synapse_group = []
        for location in locations:
            synapse = getattr(h, type)(location, sec=self)
            for name, value in list(parameters.items()):
                setattr(synapse, name, value)
            synapse_group.append(synapse)
        if len(synapse_group) == 1:
            synapse_group = synapse_group[0]
        setattr(self, label, synapse_group)
    add_synapse = add_synapses  # for backwards compatibility

    def plot(self,
             variable,
             type_mec='mech',
             label='',
             location=0.5,
             tmin=0,
             tmax=5,
             xmin=-80,
             xmax=40,
             view=None,
             show=1,
             color='k',
             line=1,
             graph=None):

        # Convert color to number
        colors = {'r':2,'k':1,'g':4,'b':3,'o':5,'mr':7,'m':9,'y':8,
                  '1':1,'2':2,'3':3,'4':4,'5':5,'6':6,'7':7,'8':8,'9':9}
        color = colors[str(color)]
        import neuron.gui
            
        if graph is None:
            self.graph = h.Graph(show)
            graph = self.graph
            h.graphList[0].append(graph)
            graph.size(tmin, tmax, xmin, xmax)
            if view is not None:
                graph.view(view[0],view[1],view[2],
                           view[3],view[4],view[5],view[6],view[7])
        if not label:
            label = variable
        if 'mech' in type_mec:
            if type(variable) == type([]):
                for var in variable:
                    print((self.name(), '%s(%g)' % (var, location)))
                    self.push()
                    if h.ismembrane(var):
                        spine_area = h.area(0.5)
                        graph.addvar(var,
                                      'ica_%s(%g)' % (var,
                                                      location),
                                      color, line, sec=self)
                        color += 1
                    h.pop_section()
            else:
                graph.addvar(variable, '%s(%g)' % (variable, location),
                            color, line, sec=self)
        if 'pp' in type_mec:
            graph.addvar(label,
                         getattr(getattr(self,variable[0]),
                                 '_ref_'+variable[1]),
                         color, line, sec=self)
        graph.flush()            
        return graph

    def record_spikes(self, threshold=-30):
        self.spiketimes = h.Vector()
        self.spikecount = h.APCount(0.5, sec=self)
        self.spikecount.thresh = threshold
        self.spikecount.record(self.spiketimes)

    def record_variable(self, variable, location=0.5, point_process=None):
        v = h.Vector()
        if point_process is not None:
            eval('v.record(getattr(self,"%s")._ref_%s, sec = self)'%(point_process,variable))
        else:
            eval('v.record(self(%g)._ref_%s, sec = self)'%(location,variable))
        return v

    def save_records(self, store, index = None, write_datasets = True):
        if index is not None:
            g = store.create_group('%s_%g'%(self.Name, index))
        else:
            g = store.create_group(self.Name)

        for r_n,r in list(self.records.items()):
            r_g = g.create_group(r_n)
            r_u = r_g.create_dataset('Unit', data = np.string_(r['unit']))
            if write_datasets:
                data = np.array(r['val'])
                data_length = data.shape[0]
                r_v = r_g.create_dataset('Data',
                                         data = data,
                                         compression="gzip",
                                         compression_opts=9,
                                         chunks=(min(100,data_length),)
                                         )
            else:
                r_v = r_g.create_dataset('Data',
                                         (1e5,),
                                         dtype = 'float',
                                         compression="gzip")#,
                                         #compression_opts=9)
                                         #chunks=(100,))

    def store_records(self, section_group, index = None):
        # dset = section_group['%s_%g'%(self.Name, index)]['Data']
        if index is not None:
            dgroup = section_group['%s_%g'%(self.Name, index)]
        else:
            dgroup = section_group[self.Name]

        print((list(dgroup.keys())))
        for r_n,r in list(self.records.items()):
            print((dgroup[r_n]['Data']))
            data = np.array(r['val'])
            print((data.shape))
            # dgroup[r_n]['Data'][:] = 
            # dgroup[r_n]['Data'].resize((500,))
            # print dgroup[r_n]['Data']

    def balance_currents(self,Vrest):
        h.v_init = Vrest
        h.init()

        # Balance ion currents with leak at Vrest by changing leak Erev
        for seg in self:
            current = 0
            if hasattr(seg,'ica'):
                current += seg.ica
            if hasattr(seg,'ina'):
                current += seg.ina
            if hasattr(seg,'ik'):
                current += seg.ik
            seg.e_pas = seg.v + current / seg.g_pas

def alias(attribute_path):
    """
    Returns a new property, mapping an attribute nested in an object hierarchy
    to a simpler name

    For example, suppose that an object of class A has an attribute b which
    itself has an attribute c which itself has an attribute d. Then placing
      e = alias('b.c.d')
    in the class definition of A makes A.e an alias for A.b.c.d
    """
    parts = attribute_path.split('.')
    attr_name = parts[-1]
    attr_path = parts[:-1]
    def set(self, value):
        obj = reduce(getattr, [self] + attr_path)
        setattr(obj, attr_name, value)
    def get(self):
        obj = reduce(getattr, [self] + attr_path)
        return getattr(obj, attr_name)
    return property(fset=set, fget=get)


def uniform_property(section_list, attribute_path):
    """
    Define a property that will have a uniform value across a list of sections.
    
    For example, suppose we define a neuron model as a class A, which contains
    three compartments: soma, dendrite and axon. Then placing
    
        gnabar = uniform_property(["soma", "axon"], "hh.gnabar")
    
    in the class definition of A means that setting a.gnabar (where a is an
    instance of A) will set the value of hh.gnabar in both the soma and axon, i.e.

        a.gnabar = 0.01
        
    is equivalent to:
    
        for sec in [a.soma, a.axon]:
            for seg in sec:
                seg.hh.gnabar = 0.01

    """
    parts = attribute_path.split('.')
    attr_name = parts[-1]
    attr_path = parts[:-1]
    def set(self, value):
        for sec_name in section_list:
            sec = getattr(self, sec_name)
            for seg in sec:
                obj = reduce(getattr, [seg] + attr_path)
                setattr(obj, attr_name, value)
    def get(self):
        sec = getattr(self, section_list[0])
        obj = reduce(getattr, [sec(0.5)] + attr_path)
        return getattr(obj, attr_name)
    return property(fset=set, fget=get)



if __name__ == "__main__":
    
    class SimpleNeuron(object):
    
        def __init__(self):
            # define ion channel parameters
            leak = Mechanism('pas', e=-65, g=0.0002)
            hh = Mechanism('hh')
            # create cable sections
            self.soma = Section(L=30, diam=30, mechanisms=[hh])
            self.apical = Section(L=600, diam=2, nseg=5, mechanisms=[leak], parent=self.soma,
                                  connection_point=DISTAL)
            self.basilar = Section(L=600, diam=2, nseg=5, mechanisms=[leak], parent=self.soma,
                                   connection_point=0.5)
            self.axon = Section(L=1000, diam=1, nseg=37, mechanisms=[hh],
                                connection_point=0)
            # synaptic input
            self.soma.add_synapses('syn', 'AlphaSynapse', onset=0.5, gmax=0.05, e=0)
    
        gnabar = uniform_property(["soma", "axon"], "hh.gnabar")
        gkbar = uniform_property(["soma", "axon"], "hh.gkbar")
    
    neuron = SimpleNeuron()
    neuron.soma.plot('v')
    neuron.apical.plot('v')
    
    neuron.gnabar = 0.15
    assert neuron.soma(0.5).hh.gnabar == 0.15
    
    h.dt = 0.025
    v_init = -65
    tstop = 5
    h.finitialize(v_init)
    h.run()

Loading data, please wait...