Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)

 Download zip file 
Help downloading and running models
Accession:245411
We use a computational model of a striatal spiny projection neuron to investigate dendritic spine calcium dynamics in response to spatiotemporal patterns of synaptic inputs. We show that spine calcium elevation is stimulus-specific, with supralinear calcium elevation in cooperatively stimulated spines. Intermediate calcium elevation occurs in neighboring non-stimulated dendritic spines, predicting heterosynaptic effects. Inhibitory synaptic inputs enhance the difference between peak calcium in stimulated spines, and peak calcium in non-stimulated spines, thereby enhancing stimulus specificity.
Reference:
1 . Dorman DB, Jedrzejewska-Szmek J, Blackwell KT (2018) Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. Elife, Kennedy, Mary B, ed. [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Neostriatum spiny neuron;
Channel(s): Ca pump; Kir; I A; I A, slow; I CAN; I K,Ca; I Krp; I Na,t; I L high threshold; I R; I T low threshold; IK Bkca; IK Skca; Na/Ca exchanger;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s): Cav3.2 CACNA1H; Cav3.3 CACNA1I; Cav1.2 CACNA1C; Cav1.3 CACNA1D; Cav2.2 CACNA1B; Kv4.2 KCND2; Kir2.1 KCNJ2; Kv2.1 KCNB1;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Calcium dynamics; Detailed Neuronal Models; Synaptic Integration; Synaptic Plasticity;
Implementer(s): Dorman, Daniel B ;
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K,Ca; I CAN; I A, slow; Na/Ca exchanger; I Krp; I R; Ca pump; Kir; IK Bkca; IK Skca; Gaba; Glutamate;
function addCDI (chanName)
str chanName

	//parameters for calcium-dep inactivation (CDI) 
	
	float Ca = 0.0
	float CaMax = 0.1 //100uM
	float CaMin = 0.0
	float CaDivs = 2000//increments of 50 nM
	float CaIncrement ={{CaMax}-{CaMin}}/{CaDivs}
    echo "CDIincrement:" {CaIncrement} 

	//CDI equation from Tuckwell review paper 2012 progress in neurobiology table A1.3 

    call {chanName} TABCREATE Z {CaDivs} {CaMin} {CaMax}
	
    int a
    float CDI
    float q, k, b, n
    for(a = 0; a < {CaDivs} + 1; a = a + 1)
			//f= (0.001/(0.001+[Ca]))Poirazi CA1  2003
			//f= (0.0005/(0.0005+[Ca])) Rhodes and Llinas 2001 Cort Pyr
        Ca=a*{CaIncrement}
        k=0.12e-3 //0.5e-3
        b={pow {k} 4} //3
        n={pow {Ca} 4} //3
        q = {{b}/({b}+{n})}
        CDI = {pow {q} 2} //100
        setfield {chanName} Z_B->table[{a}] {CDI}
        setfield {chanName} Z_A->table[{a}] {{142e-3}/{cdiqfact}} //CaL1.2 in HEK cells Barrett and Tsien 2007 roomtemp
	end	
    tweaktau {chanName} Z 
end
  	
function addGHK (chanName)
str chanName

	create ghk {chanName}GHK
  	setfield {chanName}GHK Cout 2 // Carter & Sabatini 2004 uses 2mM, 
										// Wolf 5mM
  	setfield {chanName}GHK valency 2.0
  	setfield {chanName}GHK T {TEMPERATURE}
	
  	addmsg {chanName} {chanName}GHK PERMEABILITY Gk	
end

Loading data, please wait...