Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)

 Download zip file 
Help downloading and running models
Accession:245411
We use a computational model of a striatal spiny projection neuron to investigate dendritic spine calcium dynamics in response to spatiotemporal patterns of synaptic inputs. We show that spine calcium elevation is stimulus-specific, with supralinear calcium elevation in cooperatively stimulated spines. Intermediate calcium elevation occurs in neighboring non-stimulated dendritic spines, predicting heterosynaptic effects. Inhibitory synaptic inputs enhance the difference between peak calcium in stimulated spines, and peak calcium in non-stimulated spines, thereby enhancing stimulus specificity.
Reference:
1 . Dorman DB, Jedrzejewska-Szmek J, Blackwell KT (2018) Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. Elife, Kennedy, Mary B, ed. [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Neostriatum spiny neuron;
Channel(s): Ca pump; Kir; I A; I A, slow; I CAN; I K,Ca; I Krp; I Na,t; I L high threshold; I R; I T low threshold; IK Bkca; IK Skca; Na/Ca exchanger;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s): Cav3.2 CACNA1H; Cav3.3 CACNA1I; Cav1.2 CACNA1C; Cav1.3 CACNA1D; Cav2.2 CACNA1B; Kv4.2 KCND2; Kir2.1 KCNJ2; Kv2.1 KCNB1;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Calcium dynamics; Detailed Neuronal Models; Synaptic Integration; Synaptic Plasticity;
Implementer(s): Dorman, Daniel B ;
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K,Ca; I CAN; I A, slow; Na/Ca exchanger; I Krp; I R; Ca pump; Kir; IK Bkca; IK Skca; Gaba; Glutamate;
//genesis

/***************************		MS Model, Version 9.1	*********************
**************************** 	    	CaL13channel.g 		*********************
Rebekah Evans updated 3/20/12	
******************************************************************************
******************************************************************************/


function create_CaL13
	str chanName = "CaL13_channel"
	str compPath = "/library"
	int c
	float Ek = 0.140  //(nernst calculated for 35degrees, [Cain] 50nM [Caout]2mM)
			//Ek is overwritten the the GHK object if it is used. 
	float xmin = -0.1
	float xmax = 0.05
	int 	xdivs = 3000
	float mPower = 1.0   //mh is an equally common form to m2h (tuckwell 2012)
	float hPower = 1.0
	if (calciuminact == 1)
		float zpower = 1.0
	else
		float zpower = 0
	end	
	
        float increment ={{xmax}-{xmin}}/{xdivs}
        echo "CaL13 increment:" {increment} "V"
	float x = -0.1
  	float surf = 0
 	float gMax = 0

	float hTauCaL13 	= 44.3e-3
	float mTauCaL13 	= 0.0
	float mvHalfCaL13 = -40.0e-3
	float mkCaL13     = -5e-3
	float hvHalfCaL13 = -37e-3
	float hkCaL13     = 5e-3
	float hInfCaL13	= 0.0
	float mInfCaL13	= 0.0

	float theta	= 0.0
	float beta	= 0.0
	float beta_exp	= 0.0
	float mA = 0.0
	float mB = 0.0
	float qFactCaL13 = {qfactCa}
	
	pushe {compPath}

	create tabchannel {chanName}
  	setfield {chanName} Ek {Ek} Xpower {mPower} Ypower {hPower} Zpower {zpower}
	call {chanName} TABCREATE X {xdivs} {xmin} {xmax}
        call {chanName} TABCREATE Y {xdivs} {xmin} {xmax}
		
//fill in the voltage act and inact tables

	for(c = 0; c < {xdivs} + 1; c = c + 1)
		/************************ Begin CaL13_mTau *********************/
		//mA = 39800*(vMemb + 67.24e-3)./(exp((vMemb + 67.24e-3)/15.005e-3) - 1);
		//mB = 3500*exp(vMemb/31.4e-3);
		//mTauCaL13 = 1./(mA + mB) / qFactCaL13;
		//parameters tuned to fit Tuckwell 2012 figure 12

		theta = 39800*{ {x} + 67.24e-3}
		beta = {{x} + 67.24e-3}/15.005e-3
		beta_exp = {exp {beta}}
		beta_exp = beta_exp - 1.0
		mA = {{theta}/{beta_exp}}
		
		beta = {{x}/31.4e-3}
		beta_exp = {exp {beta}} 
		mB = 3500*{beta_exp}

		mTauCaL13 = {{1/{mA + mB}}/{qFactCaL13}}	
		setfield {chanName} X_A->table[{c}] {mTauCaL13}
		/************************ End CaL13_mTau ***********************/		

		/************************ Begin CaL13_mInf *********************/
		// mInfCaL13   = 1./(1 + exp((vMemb - mvHalfCaL13)/mkCaL13));
		//parameters tuned to fit Tuckwell 2012 figure 3
		beta = {{x} - {mvHalfCaL13}}/{mkCaL13}
		beta_exp = {exp {beta}} + 1.0
		mInfCaL13 = 1.0/{beta_exp}
		setfield {chanName} X_B->table[{c}] {mInfCaL13}
		/************************ End CaL12_mInf ***********************/	

		/************************ Begin CaL13_hTau *********************/
		// hTauCaL13 
		setfield {chanName} Y_A->table[{c}] {{hTauCaL13}/{qFactCaL13}}
		/************************ End CaL12_hTau ***********************/

		/************************ Begin CaL13_hInf *********************/
		// hInfCaL13   = 1./(1 + exp((vMemb - hvHalfCaL13)/hkCaL13));
		//parameters tuned to fit Tuckwell 2012 figure 12
		beta = {{x} - {hvHalfCaL13}}/{hkCaL13}
		beta_exp = {exp {beta}} + 1.0
		hInfCaL13 = 1.0/{beta_exp}
		setfield {chanName} Y_B->table[{c}] {hInfCaL13}
		/************************ End CaL13_hInf ***********************/	
   	x = x + increment
	end	

	tweaktau {chanName} X
	tweaktau {chanName} Y

	//fill in the Z table with CDI values
	if (calciuminact == 1)
        addCDI {chanName}
	end

    addGHK {chanName}
  	setfield {chanName} Gbar {gMax*surf}

  	pope
end

Loading data, please wait...