//genesis
/*************************** MS Model, Version 9.1 *********************
**************************** KaF.g *********************
Rebekah Evans updated 3/21/12
Kv4.2
******************************************************************************
******************************************************************************/
function make_KAf_channel
//initial parameters for making tab channel
float Erev = -0.09
int m_power = 2 //used in Wolf 2005
int h_power = 1
float xshift = 0//1 //mv (positive value shifts curve to the left)
//Activation constants for alphas and betas (obtained by matching m2 to Tkatch et al., 2000 Figs 2c, and mtau to fig 2b)
//units are mV, ms
float mA_rate = 1.8
float mA_vhalf = -18
float mA_slope = -13
float mB_rate = 0.45
float mB_vhalf = 2
float mB_slope = 11
//Inactivation constants for alphas and betas obtained by matching Tkatch et al., 2000 Fig 3b, and creating a tau voltage dependence
//which is consistent with their value for V=0 in figure 3c.
//units are mV, ms
float hA_rate = 0.105
float hA_vhalf = -121
float hA_slope = 22
float hB_rate = 0.065
float hB_vhalf = -55
float hB_slope = -11
//table filling parameters
float xmin = -0.1
float xmax = 0.05
int xdivsFiner = 3000
int c = 0
float increment =1000*{{xmax}-{xmin}}/{xdivsFiner}
float x = -100
str path = "KAf_channel"
create tabchannel {path}
call {path} TABCREATE X {xdivsFiner} {{xmin}} {{xmax}}
call {path} TABCREATE Y {xdivsFiner} {{xmin}} {{xmax}}
/*fills the tabchannel with values for minf, mtau, hinf and htau,
*from the files.
*/
for (c = 0; c < {xdivsFiner} + 1; c = c + 1)
float m_alpha = {sig_form {mA_rate} {mA_vhalf} {mA_slope} {{x}+{xshift}}}
float m_beta = {sig_form {mB_rate} {mB_vhalf} {mB_slope} {{x}+{xshift}}}
float h_alpha = {sig_form {hA_rate} {hA_vhalf} {hA_slope} {{x}+{xshift}}}
float h_beta = {sig_form {hB_rate} {hB_vhalf} {hB_slope} {{x}+{xshift}}}
/* 1e-3 converts from ms to sec. Tkactch does not specify recording temperature so room temperature is assumed*/
setfield {path} X_A->table[{c}] {{{1e-3/(m_alpha+m_beta)}}/{{qfactorkAf}}}
setfield {path} X_B->table[{c}] {m_alpha/(m_alpha+m_beta)}
setfield {path} Y_A->table[{c}] {{{1e-3/(h_alpha+h_beta)}}/{{qfactorkAf}}}
setfield {path} Y_B->table[{c}] {h_alpha/(h_alpha+h_beta)}
x = x + increment
end
/* Defines the powers of m and h in the Hodgkin-Huxley equation*/
setfield {path} Ek {Erev} Xpower {m_power} Ypower {h_power}
tweaktau {path} X
tweaktau {path} Y
end
|