Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)

 Download zip file 
Help downloading and running models
Accession:245411
We use a computational model of a striatal spiny projection neuron to investigate dendritic spine calcium dynamics in response to spatiotemporal patterns of synaptic inputs. We show that spine calcium elevation is stimulus-specific, with supralinear calcium elevation in cooperatively stimulated spines. Intermediate calcium elevation occurs in neighboring non-stimulated dendritic spines, predicting heterosynaptic effects. Inhibitory synaptic inputs enhance the difference between peak calcium in stimulated spines, and peak calcium in non-stimulated spines, thereby enhancing stimulus specificity.
Reference:
1 . Dorman DB, Jedrzejewska-Szmek J, Blackwell KT (2018) Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. Elife, Kennedy, Mary B, ed. [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Neostriatum spiny neuron;
Channel(s): Ca pump; Kir; I A; I A, slow; I CAN; I K,Ca; I Krp; I Na,t; I L high threshold; I R; I T low threshold; IK Bkca; IK Skca; Na/Ca exchanger;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s): Cav3.2 CACNA1H; Cav3.3 CACNA1I; Cav1.2 CACNA1C; Cav1.3 CACNA1D; Cav2.2 CACNA1B; Kv4.2 KCND2; Kir2.1 KCNJ2; Kv2.1 KCNB1;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Calcium dynamics; Detailed Neuronal Models; Synaptic Integration; Synaptic Plasticity;
Implementer(s): Dorman, Daniel B ;
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K,Ca; I CAN; I A, slow; Na/Ca exchanger; I Krp; I R; Ca pump; Kir; IK Bkca; IK Skca; Gaba; Glutamate;
//genesis

/***************************		MS Model, Version 9.1	*********************
**************************** 	      NMDA_CDIGate.g 	*********************

******************************************************************************

*****************************************************************************/

		// This is an implementation of a CDI gate for the NMDA receptor.
		// CDI model reference: Farinella et a. 2014 Plos Comp Bio.
		// Steady-State: exp(-8*[Ca]) where [Ca] is internal calcium concentration (mM)
        // Tau: 1000 ms.
        // This is a hack to use a calcium-dependent channel gate to implement NMDAR_CDI.
        // This object will not contribute any conductance to a compartment, rather, it
        // will be set up only to pass its GK (equivalent to its Z gate value) value as
        // a message to the MOD field of the NMDA channel object


function make_NMDA_CDI_gate(chanpath)

  	int nStep = 2000
  	float nmdacdi = 1.0
  	float CaMax = 0.1 // 100 uM
	float CaMin = 0 
  	float delta = (CaMax - CaMin)/nStep  

    float nmdacdi_fact = 8.0
    float tau = 1.0 //1 second
	int i
   	float Ca = 0.0
    		
  	str chanpath 
  	
  	//pushe /library

  	//if (({exists {chanpath}}))
    //	return
  	//end

  	create  tabchannel {chanpath}
  	setfield	^		Ek  		{0e-3}		\
					Gbar		1		\  //Gbar=1 so GK will be value of Zgate
					Ik			0			\
					Gk			0			\
					Xpower  	0			\
					Ypower  	0			\
					Zpower  	1			

  	call {chanpath} TABCREATE Z {nStep} {CaMin} {CaMax} // Creates nStep entries
	
	for (i = 0; i < {nStep}; i = i + 1)		 		
 		Ca=i*delta
  		nmdacdi = {exp {-1*{nmdacdi_fact}*{Ca}}}
     	setfield {chanpath} Z_B->table[{i}] {nmdacdi} 
		setfield {chanpath} Z_A->table[{i}] {tau} 
	end		   	  		 			 
  	tweaktau {chanpath} Z
  	pope
end






Loading data, please wait...