Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)

 Download zip file 
Help downloading and running models
Accession:245411
We use a computational model of a striatal spiny projection neuron to investigate dendritic spine calcium dynamics in response to spatiotemporal patterns of synaptic inputs. We show that spine calcium elevation is stimulus-specific, with supralinear calcium elevation in cooperatively stimulated spines. Intermediate calcium elevation occurs in neighboring non-stimulated dendritic spines, predicting heterosynaptic effects. Inhibitory synaptic inputs enhance the difference between peak calcium in stimulated spines, and peak calcium in non-stimulated spines, thereby enhancing stimulus specificity.
Reference:
1 . Dorman DB, Jedrzejewska-Szmek J, Blackwell KT (2018) Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. Elife, Kennedy, Mary B, ed. [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Neostriatum spiny neuron;
Channel(s): Ca pump; Kir; I A; I A, slow; I CAN; I K,Ca; I Krp; I Na,t; I L high threshold; I R; I T low threshold; IK Bkca; IK Skca; Na/Ca exchanger;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s): Cav3.2 CACNA1H; Cav3.3 CACNA1I; Cav1.2 CACNA1C; Cav1.3 CACNA1D; Cav2.2 CACNA1B; Kv4.2 KCND2; Kir2.1 KCNJ2; Kv2.1 KCNB1;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Calcium dynamics; Detailed Neuronal Models; Synaptic Integration; Synaptic Plasticity;
Implementer(s): Dorman, Daniel B ;
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K,Ca; I CAN; I A, slow; Na/Ca exchanger; I Krp; I R; Ca pump; Kir; IK Bkca; IK Skca; Gaba; Glutamate;
//genesis

/***************************		MS Model, Version 9.1	*********************
**************************** 	      SK.g 	*********************

******************************************************************************

*****************************************************************************/

		// This is a simplified implementation of the SK channel without voltage
		// dependence. Reference: MaylieBondHersonLeeAdelman2004
		// Fast component has tau=4 ms, slow tau = 70 ms (rough ranges)


function make_SK_channel

  	int nStep = 2000
  	float SKact = 0.0
  	float CaMax = 0.1 // 100 uM
	//float CaMax = 0.006 // 6 uM 
	float CaMin = 1e-6 //1 nM
	float CaMin = 0 
  	float delta = (CaMax - CaMin)/nStep  
echo "delta=", {delta}
	float theta = 0.0
	float theta_pow = 0.0	
 	float Kd = 0.57e-003

	int i
   	float Ca = 0.0
    		
  	str chanpath = "SK_channel" 
  	
  	pushe /library

  	if (({exists {chanpath}}))
    	return
  	end

  	create  tabchannel {chanpath}
  	setfield	^		Ek  		{-90e-3}		\
					Gbar		0.145e4		\  //gbar gets overwritten by globals.g
					Ik			0			\
					Gk			0			\
					Xpower  	0			\
					Ypower  	0			\
					Zpower  	1			

  	call {chanpath} TABCREATE Z {nStep} {CaMin} {CaMax} // Creates nStep entries
	
	for (i = 0; i < {nStep}; i = i + 1)		 		
 		Ca=i*delta
   		theta = {Ca/Kd}
  		theta_pow = { pow {theta} 5.2}
  		SKact = theta_pow/{1 + theta_pow}
     	setfield {chanpath} Z_B->table[{i}] {SKact} //from Maylie et al., 2004 figure 2 
		setfield {chanpath} Z_A->table[{i}] {4.9e-3} // Fast component, tau=4.9ms from Hirschberg et al., 1998 figure 13.
	end		   	  		 			 
  	tweaktau {chanpath} Z
  	pope
end






Loading data, please wait...