Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)

 Download zip file 
Help downloading and running models
We use a computational model of a striatal spiny projection neuron to investigate dendritic spine calcium dynamics in response to spatiotemporal patterns of synaptic inputs. We show that spine calcium elevation is stimulus-specific, with supralinear calcium elevation in cooperatively stimulated spines. Intermediate calcium elevation occurs in neighboring non-stimulated dendritic spines, predicting heterosynaptic effects. Inhibitory synaptic inputs enhance the difference between peak calcium in stimulated spines, and peak calcium in non-stimulated spines, thereby enhancing stimulus specificity.
1 . Dorman DB, Jedrzejewska-Szmek J, Blackwell KT (2018) Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. Elife, Kennedy, Mary B, ed. [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Neostriatum spiny neuron;
Channel(s): Ca pump; Kir; I A; I A, slow; I CAN; I K,Ca; I Krp; I Na,t; I L high threshold; I R; I T low threshold; IK Bkca; IK Skca; Na/Ca exchanger;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s): Cav3.2 CACNA1H; Cav3.3 CACNA1I; Cav1.2 CACNA1C; Cav1.3 CACNA1D; Cav2.2 CACNA1B; Kv4.2 KCND2; Kir2.1 KCNJ2; Kv2.1 KCNB1;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Calcium dynamics; Detailed Neuronal Models; Synaptic Integration; Synaptic Plasticity;
Implementer(s): Dorman, Daniel B ;
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K,Ca; I CAN; I A, slow; Na/Ca exchanger; I Krp; I R; Ca pump; Kir; IK Bkca; IK Skca; Gaba; Glutamate;
/*form call file for creating tab channels*/

function exp_form (rate, slope, V)
	float rate,slope,V
	//equation is ({rate} *(exp ({-V}/{slope}) ))
	float numx ={{-V}/{slope}}
	float expx = {exp {numx}}
	float entry = ({rate}*{expx})
	return {entry}

function sig_form (rate, vhalf, slope, V)
	float rate, vhalf, slope, V
	//equation is ({rate}/(exp ({{V}-{vhalf}}/{slope})+1))
	float numx = {{{V}-{vhalf}}/{slope}}
	float expx = {exp {numx}}
	float entry = ({rate}/{{expx}+1})
	return {entry}

function lin_form (rate, vhalf, slope, V)

	float rate, vhalf, slope, V
	//equation is (({rate}*({V}-{vhalf}))/{exp ({v}-{vhalf}/{slope})-1)})
	float expx = {exp {{{V}-{vhalf}}/{slope}}} -1
	float numerator = {{rate}*{{V}-{vhalf}}}
	float entry = {{numerator}/{expx}}
	return {entry}
	// put in check for if v=vhalf then add 0.0001 or something. or... dtop/dbottom is L'Hopital.  

Loading data, please wait...