Glutamate mediated dendritic and somatic plateau potentials in cortical L5 pyr cells (Gao et al '20)

 Download zip file 
Help downloading and running models
Accession:249705
Our model was built on a reconstructed Layer 5 pyramidal neuron of the rat medial prefrontal cortex, and constrained by 4 sets of experimental data: (i) voltage waveforms obtained at the site of the glutamatergic input in distal basal dendrite, including initial sodium spikelet, fast rise, plateau phase and abrupt collapse of the plateau; (ii) a family of voltage traces describing dendritic membrane responses to gradually increasing intensity of glutamatergic stimulation; (iii) voltage waveforms of backpropagating action potentials in basal dendrites (Antic, 2003); and (iv) the change of backpropagating action potential amplitude in response to drugs that block Na+ or K+ channels (Acker and Antic, 2009). Both, synaptic AMPA/NMDA and extrasynaptic NMDA inputs were placed on basal dendrites to model the induction of local regenerative potentials termed "glutamate-mediated dendritic plateau potentials". The active properties of the cell were tuned to match the voltage waveform, amplitude and duration of experimentally observed plateau potentials. The effects of input location, receptor conductance, channel properties and membrane time constant during plateau were explored. The new model predicted that during dendritic plateau potential the somatic membrane time constant is reduced. This and other model predictions were then tested in real neurons. Overall, the results support our theoretical framework that dendritic plateau potentials bring neuronal cell body into a depolarized state ("UP state"), which lasts 200 - 500 ms, or more. Plateau potentials profoundly change neuronal state -- a plateau potential triggered in one basal dendrite depolarizes the soma and shortens membrane time constant, making the cell more susceptible to action potential firing triggered by other afferent inputs. Plateau potentials may allow cortical pyramidal neurons to tune into ongoing network activity and potentially enable synchronized firing, to form active neural ensembles.
Reference:
1 . Gao PP, Graham JW, Zhou WL, Jang J, Angulo SL, Dura-Bernal S, Hines ML, Lytton W, Antic SD (2020) Local Glutamate-Mediated Dendritic Plateau Potentials Change the State of the Cortical Pyramidal Neuron. J Neurophysiol [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Prefrontal cortex (PFC); Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I A; I K; I h; I K,Ca;
Gap Junctions:
Receptor(s): Glutamate; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Active Dendrites; Calcium dynamics; Axonal Action Potentials; Dendritic Bistability; Detailed Neuronal Models; Membrane Properties; Synaptic Integration;
Implementer(s): Antic, Srdjan [antic at neuron.uchc.edu]; Gao, Peng [peng at uchc.edu];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; NMDA; Glutamate; I A; I K; I h; I K,Ca; Glutamate;
#include <stdio.h>
#include "hocdec.h"
extern int nrnmpi_myid;
extern int nrn_nobanner_;

extern void _CaDynamics_E2_reg(void);
extern void _CaT_reg(void);
extern void _Ca_HVA_reg(void);
extern void _Ca_LVAst_reg(void);
extern void _Cad_reg(void);
extern void _IL_reg(void);
extern void _Ih_reg(void);
extern void _Im_reg(void);
extern void _K_Pst_reg(void);
extern void _K_Tst_reg(void);
extern void _NMDA_reg(void);
extern void _NMDAeee_reg(void);
extern void _NMDAmajor_reg(void);
extern void _NaTa_t_reg(void);
extern void _NaTs2_t_reg(void);
extern void _Nap_Et2_reg(void);
extern void _PlateauConductance_reg(void);
extern void _SK_E2_reg(void);
extern void _SKv3_1_reg(void);
extern void _ampa_reg(void);
extern void _ca_reg(void);
extern void _epsp_reg(void);
extern void _gabaa_reg(void);
extern void _gabab_reg(void);
extern void _glutamate_reg(void);
extern void _h_kole_reg(void);
extern void _h_migliore_reg(void);
extern void _kBK_reg(void);
extern void _kadist_reg(void);
extern void _kaprox_reg(void);
extern void _kv_reg(void);
extern void _na_reg(void);
extern void _vecstim_reg(void);
extern void _vmax_reg(void);

void modl_reg(){
  if (!nrn_nobanner_) if (nrnmpi_myid < 1) {
    fprintf(stderr, "Additional mechanisms from files\n");

    fprintf(stderr," CaDynamics_E2.mod");
    fprintf(stderr," CaT.mod");
    fprintf(stderr," Ca_HVA.mod");
    fprintf(stderr," Ca_LVAst.mod");
    fprintf(stderr," Cad.mod");
    fprintf(stderr," IL.mod");
    fprintf(stderr," Ih.mod");
    fprintf(stderr," Im.mod");
    fprintf(stderr," K_Pst.mod");
    fprintf(stderr," K_Tst.mod");
    fprintf(stderr," NMDA.mod");
    fprintf(stderr," NMDAeee.mod");
    fprintf(stderr," NMDAmajor.mod");
    fprintf(stderr," NaTa_t.mod");
    fprintf(stderr," NaTs2_t.mod");
    fprintf(stderr," Nap_Et2.mod");
    fprintf(stderr," PlateauConductance.mod");
    fprintf(stderr," SK_E2.mod");
    fprintf(stderr," SKv3_1.mod");
    fprintf(stderr," ampa.mod");
    fprintf(stderr," ca.mod");
    fprintf(stderr," epsp.mod");
    fprintf(stderr," gabaa.mod");
    fprintf(stderr," gabab.mod");
    fprintf(stderr," glutamate.mod");
    fprintf(stderr," h_kole.mod");
    fprintf(stderr," h_migliore.mod");
    fprintf(stderr," kBK.mod");
    fprintf(stderr," kadist.mod");
    fprintf(stderr," kaprox.mod");
    fprintf(stderr," kv.mod");
    fprintf(stderr," na.mod");
    fprintf(stderr," vecstim.mod");
    fprintf(stderr," vmax.mod");
    fprintf(stderr, "\n");
  }
  _CaDynamics_E2_reg();
  _CaT_reg();
  _Ca_HVA_reg();
  _Ca_LVAst_reg();
  _Cad_reg();
  _IL_reg();
  _Ih_reg();
  _Im_reg();
  _K_Pst_reg();
  _K_Tst_reg();
  _NMDA_reg();
  _NMDAeee_reg();
  _NMDAmajor_reg();
  _NaTa_t_reg();
  _NaTs2_t_reg();
  _Nap_Et2_reg();
  _PlateauConductance_reg();
  _SK_E2_reg();
  _SKv3_1_reg();
  _ampa_reg();
  _ca_reg();
  _epsp_reg();
  _gabaa_reg();
  _gabab_reg();
  _glutamate_reg();
  _h_kole_reg();
  _h_migliore_reg();
  _kBK_reg();
  _kadist_reg();
  _kaprox_reg();
  _kv_reg();
  _na_reg();
  _vecstim_reg();
  _vmax_reg();
}

Loading data, please wait...