ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/251493.

Four-pathway phenomenological synaptic plasticity model (Ebner et al. 2019)

 Download zip file 
Help downloading and running models
Accession:251493

Reference:
1 . Ebner C, Clopath C, Jedlicka P, Cuntz H (2019) Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell Rep 29:4295-4307.e6 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 L5B pyramidal pyramidal tract GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic Plasticity; Long-term Synaptic Plasticity; Detailed Neuronal Models; Active Dendrites; Influence of Dendritic Geometry;
Implementer(s): Ebner, Christian [ebner at fias.uni-frankfurt.de];
Search NeuronDB for information about:  Neocortex V1 L5B pyramidal pyramidal tract GLU cell;
/
EbnerEtAl2019
mod
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
SK_E2.mod *
SKv3_1.mod *
syn_4p.mod
vecevent.mod *
                            
:Comment : The transient component of the K current
:Reference : :		Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats:subtypes and gradients,Korngreen and Sakmann, J. Physiology, 2000
:Comment : shifted -10 mv to correct for junction potential
:Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21

NEURON	{
	SUFFIX K_Tst
	USEION k READ ek WRITE ik
	RANGE gK_Tstbar, gK_Tst, ik
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gK_Tstbar = 0.00001 (S/cm2)
}

ASSIGNED	{
	v	(mV)
	ek	(mV)
	ik	(mA/cm2)
	gK_Tst	(S/cm2)
	mInf
	mTau
	hInf
	hTau
}

STATE	{
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gK_Tst = gK_Tstbar*(m^4)*h
	ik = gK_Tst*(v-ek)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt
  qt = 2.3^((34-21)/10)

	UNITSOFF
		v = v + 10
		mInf =  1/(1 + exp(-(v+0)/19))
		mTau =  (0.34+0.92*exp(-((v+71)/59)^2))/qt
		hInf =  1/(1 + exp(-(v+66)/-10))
		hTau =  (8+49*exp(-((v+73)/23)^2))/qt
		v = v - 10
	UNITSON
}

Loading data, please wait...