ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/256140.

Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation (Luque et al 2019)

 Download zip file 
Help downloading and running models
Accession:256140
"Cerebellar Purkinje cells mediate accurate eye movement coordination. However, it remains unclear how oculomotor adaptation depends on the interplay between the characteristic Purkinje cell response patterns, namely tonic, bursting, and spike pauses. Here, a spiking cerebellar model assesses the role of Purkinje cell firing patterns in vestibular ocular reflex (VOR) adaptation. The model captures the cerebellar microcircuit properties and it incorporates spike-based synaptic plasticity at multiple cerebellar sites. ..."
Reference:
1 . Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A (2019) Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS Comput Biol 15:e1006298 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell; Cerebellum interneuron granule GLU cell; Vestibular neuron; Abstract integrate-and-fire leaky neuron;
Channel(s): I K; I Na,t; I L high threshold; I M;
Gap Junctions:
Receptor(s): AMPA; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: EDLUT; NEURON; MATLAB;
Model Concept(s): Activity Patterns; Sleep; Long-term Synaptic Plasticity; Vestibular;
Implementer(s): Luque, Niceto R. [nluque at ugr.es];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; Cerebellum interneuron granule GLU cell; AMPA; Gaba; I Na,t; I L high threshold; I K; I M;
/
LuqueEtAl2019
EDLUT
Articulo purkinje
CASE_B
include
integration_method
BDFn.h *
BDFn_GPU.h *
BDFn_GPU2.h *
Euler.h *
Euler_GPU.h *
Euler_GPU2.h *
FixedStep.h *
FixedStepSRM.h *
IntegrationMethod.h *
IntegrationMethod_GPU.h *
IntegrationMethod_GPU2.h *
LoadIntegrationMethod.h *
LoadIntegrationMethod_GPU.h *
LoadIntegrationMethod_GPU2.h *
RK2.h *
RK2_GPU.h *
RK2_GPU2.h *
RK4.h *
RK4_GPU.h *
RK4_GPU2.h *
RK45.h *
                            
/***************************************************************************
 *                           RK4.h                                         *
 *                           -------------------                           *
 * copyright            : (C) 2013 by Francisco Naveros                    *
 * email                : fnaveros@atc.ugr.es                              *
 ***************************************************************************/

/***************************************************************************
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 3 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 ***************************************************************************/

#ifndef RK4_H_
#define RK4_H_

/*!
 * \file RK4.h
 *
 * \author Francisco Naveros
 * \date May 2013
 *
 * This file declares a class which implement the fourth order Runge Kutta integration method. This class implement a fixed step
 * integration method.
 */

#include "./FixedStep.h"


class TimeDrivenNeuronModel;

/*!
 * \class RK4
 *
 * \brief RK4 integration methods in CPU
 *
 * This class abstracts the behavior of a fourth order Runge Kutta integration method for neurons in a 
 * time-driven spiking neural network.
 * It includes internal model functions which define the behavior of integration methods
 * (initialization, calculate next value, ...).
 *
 * \author Francisco Naveros
 * \date May 2013
 */
class RK4 : public FixedStep {
	protected:

	public:


		/*!
		 * \brief Constructor with parameters.
		 *
		 * It generates a new fourth order Runge-Kutta object.
		 *
		 * \param NewModel time driven neuron model associated to this integration method.
		 * \param N_neuronStateVariables total number of state variable for each neuron
		 * \param N_differentialNeuronState number of state variables that are diffined by a differential ecuation.
		 * \param N_timeDependentNeuronState number of state variables that are not diffined by a differential ecuation.
		 */
		RK4(TimeDrivenNeuronModel * NewModel, int N_neuronStateVariables, int N_differentialNeuronState, int N_timeDependentNeuronState);

		/*!
		 * \brief Class destructor.
		 *
		 * It destroys an object of this class.
		 */
		~RK4();
		

		/*!
		 * \brief It calculate the new neural state variables for a defined elapsed_time.
		 *
		 * It calculate the new neural state variables for a defined elapsed_time.
		 *
		 * \param index for method with memory (e.g. BDF1ad, BDF2, BDF3, etc.).
		 * \param NeuronState neuron state variables of one neuron.
		 * \param elapsed_time integration time step.
		 */
		virtual void NextDifferentialEcuationValue(int index, float * NeuronState, float elapsed_time);


		/*!
		 * \brief It prints the integration method info.
		 *
		 * It prints the current integration method characteristics.
		 *
		 * \param out The stream where it prints the information.
		 *
		 * \return The stream after the printer.
		 */
		virtual ostream & PrintInfo(ostream & out);


		/*!
		 * \brief It initialize the state of the integration method for method with memory (e.g. BDF1ad, BDF2, BDF3, etc.).
		 *
		 * It initialize the state of the integration method for method with memory (e.g. BDF1ad, BDF2, BDF3, etc.).
		 *
		 * \param N_neuron number of neurons in the neuron model.
		 * \param inicialization vector with initial values.
		 */
		void InitializeStates(int N_neurons, float * initialization){};


		/*!
		 * \brief It reset the state of the integration method for method with memory (e.g. BDF1ad, BDF2, BDF3, etc.).
		 *
		 * It reset the state of the integration method for method with memory (e.g. BDF1ad, BDF2, BDF3, etc.).
		 *
		 * \param index indicate witch neuron must be reseted.
		 */
		void resetState(int index){};
};

#endif /* RK4_H_ */

Loading data, please wait...