A computational model of oxytocin modulation of olfactory recognition memory (Linster & Kelsch 2019)

 Download zip file 
Help downloading and running models
Accession:257940
Model of olfactory bulb (OB) and anterior olfactory nucleus (AON) pyramidal cells. Includes olfactory sensory neurons, mitral cells, periglomerular, external tufted and granule interneurons and pyramidal cells. Can be built to include a feedback loop between OB and AON. Output consists of voltage and spikes over time in all neurons. Model can be stimulated with simulated odorants. The code submitted here has served for a number of modeling explorations of olfactory bulb and cortex. The model architecture is defined in "bulb.dat" with synapses defined in "channels.dat". The main function to run the model can be found in "neuron.c". Model architecture is constructed in "set.c" from types defined in "sim.c". A make file to create an executable is located in "neuron.mak".
Reference:
1 . Linster C, Kelsch W (2019) A computational model of oxytocin modulation of olfactory recognition memory. eNeuro [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main interneuron granule TC GABA cell; Olfactory bulb main tufted cell external;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s):
Implementer(s): Linster, Christiane [cl243 at cornell.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main interneuron granule TC GABA cell;
#include "cell.init"


char *NTEXT (unit)
int 	unit;
{
char chain[20];   
  if (units[unit].type == mitral)
	sprintf (chain, "m1 %d", units[unit].couche);
  if (units[unit].type == PG)
      	sprintf (chain, "pg %d", units[unit].couche);
  if (units[unit].type == mitral2)
      	sprintf (chain, "m2 %d", units[unit].couche);
  if (units[unit].type == granule)
      	sprintf (chain, "gr %d", units[unit].couche);
  if (units[unit].type == receptor)
      	sprintf (chain, " R %d", unit);  
  if (units[unit].type == pyr)
      	sprintf (chain, "p %d", units[unit].couche);
  if (units[unit].type == inhib1)
      	sprintf (chain, "i1 %d", units[unit].couche);
  if (units[unit].type == inhib2)
      	sprintf (chain, "i2 %d", units[unit].couche);
  /*if (units[unit].type == chol)
	sprintf (chain,"chol");*/
  if (units[unit].type == pyr)
	sprintf (chain, "p1 %d", units[unit].couche);
  /*if (units[unit].type == pyr2)
	sprintf (chain, "p2 %d", units[unit].couche);*/

  return (chain);
}

void SELECT (y, ymul, w)
int   	  y, ymul;
WIND      w;
{
int   max, min;
int   unit;
  for (unit = w.from; unit < w.too; unit++)
      {
      max = units[unit].y_coor + ymul;
      min = units[unit].y_coor - ymul;
      if ((y > min) && (y < max))
      	  break;
      }
  units[unit].selected = VRAI;
  CIRCLE (units[unit].x_coor-5, units[unit].y_coor, 2);
}

void DESELECT (y, ymul, w)
int   	  y, ymul;
WIND	  w;
{
int   max, min;
int   unit;
  for (unit = w.from; unit < w.too; unit++)
      {
      max = units[unit].y_coor + ymul;
      min = units[unit].y_coor - ymul;
      if ((y > min) && (y < max))
      	  break;
      }
  units[unit].selected = FAUX;
  INVERT ();
  CIRCLE (units[unit].x_coor-5, units[unit].y_coor, 2);
  SETBACK ();
}


void RESET_COOR ()
{
int unit;
	for (unit = 0; unit < N_UNITS; unit++)
		units[unit].x_coor = units[unit].y_coor = 0;
}

void DESELECT_ALL ()
{
int unit;                               
	for (unit = 0; unit < N_UNITS; unit++)
	  if (units[unit].selected == VRAI)
	      {
	      units[unit].selected = FAUX;                           
		INVERT ();
		CIRCLE (units[unit].x_coor-5, units[unit].y_coor, 2);
		SETBACK ();
		}
}


void DRAW_MOLECULES (x, y, xmul)
int x, y, xmul;
{
         
int x0, x1, m, o, y1;
	for (o = 0; o < NODS; o++)    
		{
		x1 = x + odors[o].from * xmul;
		for (m = 0; m < MOL; m++)
			{ 
			if (odors[o].values[m] != 0.0)
				FILLED_CIRCLE (x1, y, 5);
			else 
				CIRCLE (x1, y, 5);
			x1 += 10;
			}	   
		x1 = x + odors[o].from * xmul;
              	y1 = y - 10;
		FILLED_TRIANGLE (x1, y1, x1+6, y1, x1+3, y1-10);
		x1 = x + odors[o].too * xmul;
		FILLED_TRIANGLE (x1+3, y1, x1, y1-10, x1+6, y1-10);

		}   

}

void SHOW_WEIGHTS ()

{
int unit, x, y, y0;
LINK *link;
char chain[20];
y = 20;
	if (weight_window == NULL)
  		weight_window = OPEN_WINDOW (0, 0, 450, 100, blanc);
	CHOOSE_WINDOW (weight_window);
	CLEAR();
	for (unit = 0; unit < N_UNITS; unit++)
		{
		if (units[unit].type == granule)
			{
			y += 10;
			link = units[unit].links_to_unit;
			while (link)
				{
				if (units[link->from_unit].type == pyr)
					{
					x = units[link->from_unit].couche * 20 + 20;

					FILLED_CIRCLE (x, y, (int) (link->weight * 200));
						
					}     
				link = link->next;
				}
			}
		}
 
			
}

#if 0
void DRAW_FFT (x, y, x_mul, y_mul, ffts)
FFT *ffts; 
short int	x, y, x_mul, y_mul;
{             
int	  step, steppi, steppo, from, too, o, point;
char	  chain[50];  
short int x1;
float	  help;   
	if (FOURRIER == FAUX)
		{   
		point = ffts[0].points;
		for (step = 0, steppi = 0; step < point/8; step++)
			{
			if (step == steppi)
				{
				help = ceil (step / (point*(DELTA/1000)));                                                            
				/*sprintf (chain, "%3.0f", help);
				x1 = x + 4*x_mul * step;
				TEXT (chain, x1-10, y + 15);*/

				steppi += 6;	
				} 
			}		
 		if (ffts[0].max_freq != 0.0)
			help = (DELTA*point) / ffts[0].max_freq;
		else help = 0.0;
		CURVE (x, y, 4*x_mul, y_mul, point/8, ffts[0].fft);
      	      	  AXIS (x, y, 4*x_mul, y_mul, point/8, 6);
		if (help != 0.0) 
		    sprintf (chain, " %5.3f at %5.3f ms or %5.3f Hz", sqrt (ffts[0].max), help/1000, 1000/help);	
		TEXT (chain, x + (step+1) * 2 * x_mul, y);

		}
	else
		{                         
		
		for (o = 0; o < NODS; o++)
			{
			from = odors[o].from; 
			too = odors[o].too;
			point = ffts[o].points;
			for (step = 0, steppi = 6; step < point/4; step++)
				{
				if (step == steppi)
					{
					help = ceil (step / (point*(DELTA/1000)));                                                            
					sprintf (chain, "%3.0f", help);
					x1 = from*x_mul + x + 2*x_mul * step;
					TEXT (chain, x1-10, y + 15);
/*					if ((step != 0) && (help != 0.0))
						sprintf (chain, "%3.0f", ceil (1000/help));
					else 
						sprintf (chain, "%3.0f", 0.0);
					TEXT (chain, x1-10, y + 20);
*/					steppi += 24;	
					} 
	              	      	  }
			if (ffts[o].max_freq != 0.0)
				help = DELTA*point / ffts[o].max_freq;
			else help = 0.0;

			CURVE (x+x_mul*from, y, x_mul*2, y_mul, point/4, ffts[o].fft);  
      	      	      	AXIS (x+x_mul*from, y, x_mul*2, y_mul, point/4, 12);
			if (help != 0.0) 
			    sprintf (chain, "%5.3f at %5.3f ms or %5.3f Hz", sqrt (ffts[o].max), help/1000, 1000/help);	
			TEXT (chain, x+x_mul*from+(step+1) * 2 * x_mul, y);
			}
		}	
		
}		


void DRAW_CROSS (x, y, xmul, yspectre, yphase, ycurve)
int   x, y, xmul, yspectre, yphase;
{
int steppi, step, points; 
float help;
char chain[20];
int i, x1;
	i = 1;  
	while (N_STEPS >= i)
		i *= 2;
	points = i / 2;	    
		for (step = 0, steppi = 0; step < points/2; step++)
			{
			if (step == steppi)
				{
				help = ceil (step / (points*DELTA));                                                            
				sprintf (chain, "%3.0f", help);
				x1 = x + xmul * step - 10;
				TEXT (chain, x1, y + 15);
/*				if (step != 0)
					sprintf (chain, "%3.1f", 1000 / help);
				else 
					sprintf (chain, "%3.1f", 0.0);
				TEXT (chain, x1, y + 20);
*/				if (help != 0.0)
					sprintf (chain, "%3.0f", 1.0/help * 1000.0);
				else 
					sprintf (chain, "0");
				TEXT (chain, x1, y+yphase+10+ycurve+10+20);
				steppi += 12;	
				} 
			}	
      	CURVE (x, y, xmul, yspectre, points/2, spectre);
      	AXIS (x, y, xmul, yspectre, points/2, 12);	
      	SPIKES (x, y+yphase+10, xmul, yphase, points/2, phase);
      	AXIS (x, y+yphase+10, xmul, yphase, points/2, 12);

	CURVE (x, y+yphase+10+ycurve+10, xmul, ycurve, points/2, ccurve);
	AXIS (x, y + yphase+10+ycurve+10, xmul, ycurve, points/2, 12);

      	TEXT ("click right for quit", 10, 10);
}


#endif
























Loading data, please wait...