Biochemically detailed model of LTP and LTD in a cortical spine (Maki-Marttunen et al 2020)

 Download zip file 
Help downloading and running models
Accession:260971
"Signalling pathways leading to post-synaptic plasticity have been examined in many types of experimental studies, but a unified picture on how multiple biochemical pathways collectively shape neocortical plasticity is missing. We built a biochemically detailed model of post-synaptic plasticity describing CaMKII, PKA, and PKC pathways and their contribution to synaptic potentiation or depression. We developed a statistical AMPA-receptor-tetramer model, which permits the estimation of the AMPA-receptor-mediated maximal synaptic conductance based on numbers of GluR1s and GluR2s predicted by the biochemical signalling model. We show that our model reproduces neuromodulator-gated spike-timing-dependent plasticity as observed in the visual cortex and can be fit to data from many cortical areas, uncovering the biochemical contributions of the pathways pinpointed by the underlying experimental studies. Our model explains the dependence of different forms of plasticity on the availability of different proteins and can be used for the study of mental disorder-associated impairments of cortical plasticity."
Reference:
1 . Mäki-Marttunen T, Iannella N, Edwards AG, Einevoll GT, Blackwell KT (2020) A unified computational model for cortical post-synaptic plasticity. Elife [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex spiking regular (RS) neuron;
Channel(s): I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate; Norephinephrine; Acetylcholine;
Simulation Environment: NEURON; NeuroRD;
Model Concept(s): Long-term Synaptic Plasticity;
Implementer(s): Maki-Marttunen, Tuomo [tuomomm at uio.no];
Search NeuronDB for information about:  I Calcium; Acetylcholine; Norephinephrine; Glutamate;
/
synaptic
L23PC
L23_PC_cADpyr229_1
L23_PC_cADpyr229_2
L23_PC_cADpyr229_3
L23_PC_cADpyr229_4
L23_PC_cADpyr229_5
mechanisms
README.html
biophysics.hoc
collectlocalcurrswithV.py
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI0.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI0.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI10.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-10.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI10.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-10.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI100.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-100.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI100.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-100.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI120.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-120.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI120.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-120.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI140.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-140.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI140.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-140.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI15.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-15.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI15.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-15.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI160.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-160.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI160.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-160.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI180.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-180.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI180.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-180.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI2.5.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-2.5.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI20.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-20.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI20.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-20.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI200.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-200.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI200.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-200.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-210.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-220.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-230.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI25.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-25.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI25.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-25.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI30.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-30.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI30.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-30.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI40.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-40.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI40.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-40.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI5.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-5.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI5.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-5.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI50.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-50.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI50.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-50.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI60.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-60.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI60.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-60.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI80.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-80.0.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI80.0_withV.mat
currClips0_imut0_neckLen0.5_neckDiam0.1_stimfreq1.0_pulseamp5.0_Nsyn10_Ninputs1apic250-300_Econ0.001_wNMDA3.2_Npulses4_ISI-80.0_withV.mat
init_nogui.hoc
morph_accurate_segdata_icell1.sav
morph_accurate_segdata_icell2.sav
morph_accurate_segdata_icell3.sav
morph_accurate_segdata_icell4.sav
morph_accurate_segdata_icell5.sav
morphology.hoc
mytools.py *
runmodelwithV.py
template.hoc
template_old.hoc
                            
from neuron import h
import sys
from pylab import *
import time
import scipy.io
import mytools
import pickle

icell = 0 # Note: here icell=0 is the first cell, in ../l23pc2 icell=1 is the first cell
if len(sys.argv) > 1:
  icell = int(sys.argv[1])

tstop = 20000
rdSeed = 1
rateE = 0.0

mutID = 0
stimfreq = 1.0
stimN = 100
gCoeff = 1.0
Econ = 0.0003
weight_factor_NMDA = 1.0
Nsyn = 5
Npulses = 4       #How many pulses in each burst paired (at perisomatic region) with presynaptic stimulation
dtpulses = 10.0   #Interburst interval in the perisomatic stimulus
pulsedur = 2.0    #How long is each current pulse
pulseamp = 1.0    #Amplitude in nanoamps
ISIpairing = 0.0  #The pairing (STDP) interval. 0 means that the first pulse starts at the same time as the presynaptic stimulus.

neckLen = 0.5 #https://books.google.no/books?id=reRPgWOImqIC&pg=PA149&lpg=PA149&dq=spine+neck+length+layer+2/3&source=bl&ots=YRM4VvBYZf&sig=ACfU3U13DlsYsJOp3sSzhrh3vI2LuarKow&hl=en&sa=X&ved=2ahUKEwjt25S-j-vgAhVtwcQBHcRwCFIQ6AEwB3oECAgQAQ#v=onepage&q=spine%20neck%20length%20layer%202%2F3&f=false (Yuste 2010 Dendritic spines, p. 149: 0.2-1.0um (or 0.1-2.0um))
neckDiam = 0.1 #(Yuste 2010 Dendritic spines, p.32: 0.1-0.5um)
headLen = 0.85 #These values of headlen and headdiam make up 0.5um3
headDiam = 0.85 #These values of headlen and headdiam make up 0.5um3
dodraw = 1
dendtree = 'apic'
spinelocations = '100-200'
if len(sys.argv) > 2:
  mutID = int(float(sys.argv[2]))
if len(sys.argv) > 3:
  stimfreq = float(sys.argv[3])
if len(sys.argv) > 4:
  stimN = int(float(sys.argv[4]))
if len(sys.argv) > 5:
  Nsyn = int(sys.argv[5])
if len(sys.argv) > 6:
  Ninputs = int(sys.argv[6])
if len(sys.argv) > 7:
  dendtree = sys.argv[7]
if len(sys.argv) > 8:
  spinelocations = sys.argv[8]
if len(sys.argv) > 9:
  rateE = float(sys.argv[9])
if len(sys.argv) > 10:
  Npulses = int(float(sys.argv[10]))
if len(sys.argv) > 11:
  ISIpairing = float(sys.argv[11])
if len(sys.argv) > 12:
  dtpulses = float(sys.argv[12])
if len(sys.argv) > 13:
  pulseamp = float(sys.argv[13])
if len(sys.argv) > 14:
  neckLen = float(sys.argv[14])
if len(sys.argv) > 15:
  neckDiam = float(sys.argv[15])
if len(sys.argv) > 16:
  Econ = float(sys.argv[16])
if len(sys.argv) > 17:
  weight_factor_NMDA = float(sys.argv[17])
if len(sys.argv) > 18:
  rdSeed = int(float(sys.argv[18]))
if len(sys.argv) > 19:
  dodraw = int(float(sys.argv[19]))

spineLocs = [int(float(x)) for x in spinelocations.split('-')]
if dendtree == 'apic':
  spineDendTree = 0
elif dendtree == 'dend' or dendtree == 'basal':
  spineDendTree = 1
else:
  print 'dendtree '+dendtree+' not recognized!'
  sys.exit()


cellnames = ['cADpyr229_L23_PC_5ecbf9b163', 'cADpyr229_L23_PC_8ef1aa6602', 'cADpyr229_L23_PC_863902f300', 'cADpyr229_L23_PC_c292d67a2e', 'cADpyr229_L23_PC_c2e79db05a']
h("""
{load_file("stdlib.hoc")}
{load_file("stdrun.hoc")}
{load_file("L23_PC_cADpyr229_"""+str(icell+1)+"""/constants.hoc")}
{load_file("import3d.hoc")}
{load_file("morphology.hoc")}
{load_file("biophysics.hoc")}
{load_file("template.hoc")}
objref cvode
cvode = new CVode()
{cvode.active(1)}
{cvode.atol(0.00005)}

objref cell
objref time, voltage, iNMDAs_stim, vspines
cell = new """+cellnames[icell]+"""(0)
{voltage = new Vector()}
{time = new Vector()}
{iNMDAs_stim = new List()}
{vspines = new List()}
rdSeed = """+str(rdSeed)+"""
rateE = """+str(rateE)+"""
Napical = 0
Nbasal = 0
forsec cell.apical Napical = Napical + 1
forsec cell.basal Nbasal = Nbasal + 1
""")

areas = []
secnames = []
Nsegs = []
treenames = ['apic','dend']
treeIndStarts = [0, int(h.Napical)]
for i in range(0,int(h.Napical)+int(h.Nbasal)):
  if i < int(h.Napical):
    secname = 'apic['+str(i)+']'
  else:
    secname = 'dend['+str(i-int(h.Napical))+']'
  h("""myarea = 0
cell."""+secname+""" myNseg = nseg
for (i=0; i<myNseg; i+=1) { cell."""+secname+""" myarea = myarea + area((0.5+i)/myNseg) }
""")
  areas.append(h.myarea)
  secnames.append(secname)
  Nsegs.append(int(h.myNseg))
area_apic = sum(areas[0:int(h.Napical)])
area_dend = sum(areas[int(h.Napical):])
ps = [x/(area_apic+area_dend) for x in areas]
cumps = [sum(ps[0:1+i]) for i in range(0,len(ps))]

syncompsStim = []
synsecsStim = []
synxsStim = []
synxsegsStim = []
NspinesSet = 0
isyn = 0
while NspinesSet < Nsyn:
  if isyn%1000000 == 999999:
    print "Tried a million times..."
  isyn = isyn + 1
  r = rand()
  xseg = rand()
  isec = next((i for i in range(0,len(ps)) if cumps[i] > r))
  isecintree = isec if spineDendTree == 0 else isec - int(h.Napical)
  itree = int(isec >= int(h.Napical))
  if itree != spineDendTree:
    continue
  h('access cell.'+treenames[spineDendTree]+'['+str(isecintree)+']')
  mydist = h.distance(xseg)
  if mydist < spineLocs[0] or mydist > spineLocs[1]:
    continue
  syncompsStim.append(spineDendTree)
  synsecsStim.append(isecintree)
  synxsStim.append(xseg)
  synxsegsStim.append(int(synxsStim[-1]*Nsegs[isec]))
  NspinesSet = NspinesSet + 1
print "Spine locations determined after "+str(isyn)+" trials"

h("""
objref synlist, preconlist, nilstim, somastimlist
synlist = new List()
preconlist = new List()
somastimlist = new List()
""")

tstart_samp = 4500

for istim in range(0,stimN):
  for ipulse in range(0,Npulses):
    h('cell.soma somastimlist.append(new IClamp(0.5))')
    h('somastimlist.o(somastimlist.count()-1).dur = '+str(pulsedur))
    h('somastimlist.o(somastimlist.count()-1).amp = '+str(pulseamp))
    h('somastimlist.o(somastimlist.count()-1).del = '+str(tstart_samp+istim*(1000.0/stimfreq)+ISIpairing+ipulse*dtpulses))

#Poisson + stimulus inputs, exc.
h("SynList_stimulusSynstart = synlist.count()")
h("create spineNeck["+str(Nsyn)+"]")
h("create spineHead["+str(Nsyn)+"]")
stimcomps = []
stimdistances = []
stimsecs = []
stimxs = []
for isyn in range(0,Nsyn):
  h('spineNeck['+str(isyn)+'].L = '+str(neckLen))
  h('spineNeck['+str(isyn)+'].diam = '+str(neckLen))
  h('spineNeck['+str(isyn)+'].nseg = 1')
  h('spineNeck['+str(isyn)+'].cm = cell.soma.cm')
  h('spineNeck['+str(isyn)+'].Ra = cell.soma.Ra')
  h('spineHead['+str(isyn)+'].L = '+str(headLen))
  h('spineHead['+str(isyn)+'].diam = '+str(headLen))
  h('spineHead['+str(isyn)+'].nseg = 1')
  h('spineHead['+str(isyn)+'].cm = cell.soma.cm')
  h('spineHead['+str(isyn)+'].Ra = cell.soma.Ra')
  icomp = synsecsStim[isyn]
  isec = icomp if icomp < int(h.Napical) else icomp - int(h.Napical)
  secname = 'apic' if icomp < int(h.Napical) else 'dend'
  x = synxsStim[isyn]
  h("""
cell."""+secname+"""["""+str(isec)+"""] connect spineNeck["""+str(isyn)+"""](0), """+str(x)+"""
spineNeck["""+str(isyn)+"""] connect spineHead["""+str(isyn)+"""](0), 1
access spineHead["""+str(isyn)+"""]
""")
  for iinput in range(0,Ninputs):
    h("""
{spineHead["""+str(isyn)+"""](0) synlist.append(new ProbAMPANMDA_EMST(0.5))}
iloc = synlist.count()-1
synlist.o[iloc].gmax = """+str(Econ)+"""
synlist.o[iloc].tau_r_AMPA = 0.3
synlist.o[iloc].tau_d_AMPA = 3
synlist.o[iloc].tau_r_NMDA = 2
synlist.o[iloc].tau_d_NMDA = 65
synlist.o[iloc].e = 0
synlist.o[iloc].Dep = 670
synlist.o[iloc].Use = 0.5
synlist.o[iloc].Fac = 17
synlist.o[iloc].u0 = 0
synlist.o[iloc].weight_factor_NMDA = """+str(weight_factor_NMDA)+"""
{preconlist.append(new NetCon(nilstim, synlist.o[iloc]))}
//print "len(preconlist) = ", preconlist.count(), ", len(synlist) = ", synlist.count()
preconi = preconlist.count()-1 //connection index
preconlist.o[preconi].weight = 1.0
preconlist.o[preconi].delay = 0
""")
  stimcomps.append(int(icomp >= int(h.Napical)))
  stimdistances.append(h.distance(x,sec=h.cell.apic[isec] if icomp < int(h.Napical) else h.cell.dend[isec]))
  stimsecs.append(isec)
  stimxs.append(x)


h("""
access cell.soma
//time.record(&t, 0.1)
//{voltage.record(&v(0.5), 0.1)}
{cell.soma cvode.record(&v(0.5),voltage,time)}
""")
for isyn in range(0,Nsyn):
  icomp = synsecsStim[isyn]
  isec = icomp if icomp < int(h.Napical) else icomp - int(h.Napical)
  secname = 'apic' if icomp < int(h.Napical) else 'dend'
  x = synxsStim[isyn]
  for iinput in range(0,Ninputs):
    h('{iNMDAs_stim.append(new Vector())}')
    h('{vspines.append(new Vector())}')
    #h('{cell.'+secname+'['+str(isec)+'] cvode.record(&synlist.o[SynList_stimulusSynstart+'+str(isyn)+'].i_NMDA,iNMDAs_stim.o['+str(isyn)+'],time)}')
    h('{spineHead['+str(isyn)+'] cvode.record(&synlist.o[SynList_stimulusSynstart+'+str(isyn*Ninputs + iinput)+'].i_NMDA,iNMDAs_stim.o['+str(isyn*Ninputs + iinput)+'],time)}')
    h('{spineHead['+str(isyn)+'] cvode.record(&v(0.5),vspines.o['+str(isyn*Ninputs + iinput)+'],time)}')

h("""
{objref fih,preTrainList,rds1}
{preTrainList = new List()}
{rds1 = new Random(1000*rdSeed+i)}//random for presynaptic trains
if (rateE > 0) {rds1.negexp(1/rateE)} else {rds1.negexp(1e8)}
""")

h("""
proc myqueue() {local isyn
  //Exc., Poisson + Stimulated
  for (isyn=0; isyn<"""+str(Nsyn*Ninputs)+"""; isyn+=1) {
    {preTrainList.append(new Vector())}
    if (rateE > 0) {
      pst=0 //presynaptic spike time
      while(pst < tstop){
        //print "{preconlist.o[", SynList_stimulusSynstart+isyn,"].event(pst), len(preconlist) = ", preconlist.count(), ", Nsyn = ", """+str(Nsyn)+""", ", len(synsecsStim) = """+str(len(synsecsStim))+""" "
        pst+= 1000*rds1.repick()
        {preTrainList.o[preTrainList.count()-1].append(pst)}
        {preconlist.o[SynList_stimulusSynstart+isyn].event(pst)}
      }
    }
    for (istim=0; istim<"""+str(stimN)+"""; istim+=1) {
      //tnow = """+str(tstart_samp)+"""+istim*"""+str(1000.0/stimfreq)+"""
      //print "event tnow = ", tnow
      {preTrainList.o[preTrainList.count()-1].append("""+str(tstart_samp)+"""+istim*"""+str(1000.0/stimfreq)+""")}
      {preconlist.o[SynList_stimulusSynstart+isyn].event("""+str(tstart_samp)+"""+istim*"""+str(1000.0/stimfreq)+""")}
    }
  }
}
""")

print "tstop = "+str(tstop)
timenow = time.time()
h("""
{fih = new FInitializeHandler("myqueue()")}
tstop = """+str(tstop)+"""
v0 = -75
init()
print "Starting simulation..."
run()""")
print 'Simulation done in '+str(time.time()-timenow)+' seconds'

dt_samp = 1.0
Nsamp = 15000
#  Npulses = int(float(sys.argv[6]))
#  ISIpairing = float(sys.argv[7])
#  dtpulses = float(sys.argv[8])
scipy.io.savemat("noisy_icell"+str(icell)+"_imut"+str(mutID)+"_n"+str(stimN)+"_"+str(stimfreq)+"_neckLen"+str(neckLen)+"_neckDiam"+str(neckDiam)+"_Nsyn"+str(Nsyn)+"_Ninputs"+str(Ninputs)+dendtree+spinelocations+"_Econ"+str(Econ)+'_wNMDA'+str(weight_factor_NMDA)+"_rateE"+str(rateE)+"_Npulses"+str(Npulses)+"_ISI"+str(ISIpairing)+"_dtpulses"+str(dtpulses)+"_pulseamp"+str(pulseamp)+"_seed"+str(rdSeed)+"_withV.mat",
                 {'tstart_samp': tstart_samp, 'dt_samp': dt_samp, 'Nsamp': Nsamp, 
                  'DATA': [mytools.interpolate(array(h.time),array(h.iNMDAs_stim[isyn]),[tstart_samp+i*dt_samp for i in range(0,Nsamp)]) for isyn in range(0,len(h.iNMDAs_stim))],
                  'vspines': [mytools.interpolate(array(h.time),array(h.vspines[isyn]),[tstart_samp+i*dt_samp for i in range(0,Nsamp)]) for isyn in range(0,len(h.iNMDAs_stim))],
                  'stimdistances': stimdistances, 'stimcomps': stimcomps, 'stimsecs': stimsecs, 'stimxs': stimxs, 'vsoma': array(h.voltage), 'times': array(h.time)})

if dodraw:
  f,axarr = subplots(1,1)
  axarr.plot(array(h.time),array(h.voltage))
  f.savefig("vsoma_icell"+str(icell)+"_imut"+str(mutID)+"_n"+str(stimN)+"_"+str(stimfreq)+"_neckLen"+str(neckLen)+"_neckDiam"+str(neckDiam)+"_Nsyn"+str(Nsyn)+"_Ninputs"+str(Ninputs)+dendtree+spinelocations+"_Econ"+str(Econ)+'_wNMDA'+str(weight_factor_NMDA)+"_rateE"+str(rateE)+"_Npulses"+str(Npulses)+"_ISI"+str(ISIpairing)+"_dtpulses"+str(dtpulses)+"_pulseamp"+str(pulseamp)+"_seed"+str(rdSeed)+".eps")



Loading data, please wait...