Mice Somatosensory L2/3 Pyramidal cells (Iascone et al 2020)

 Download zip file 
Help downloading and running models
Accession:261460
Mice L2/3 pyramidal cells with full excitatory and inhibitory synaptic maps (Models used in Whole-neuron synaptic mapping reveals local balance between excitatory and inhibitory synapse organization - Iascone et at 2020)
Reference:
1 . Iascone DM, Li Y, Sümbül U, Doron M, Chen H, Andreu V, Goudy F, Blockus H, Abbott LF, Segev I, Peng H, Polleux F (2020) Whole-Neuron Synaptic Mapping Reveals Spatially Precise Excitatory/Inhibitory Balance Limiting Dendritic and Somatic Spiking Neuron
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic-input statistic;
Implementer(s): Doron, Michael [michael.doron at mail.huji.ac.il];
/
IasconeEtAl2020
mod_files
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPA.mod
ProbAMPANMDA2_ratio.mod *
ProbUDFsyn2_lark.mod *
SK_E2.mod *
SKv3_1.mod *
vecevent.mod *
                            
: SK-type calcium-activated potassium current
: Reference : Kohler et al. 1996

NEURON {
       SUFFIX SK_E2
       USEION k READ ek WRITE ik
       USEION ca READ cai
       RANGE gSK_E2bar, gSK_E2, ik
}

UNITS {
      (mV) = (millivolt)
      (mA) = (milliamp)
      (mM) = (milli/liter)
}

PARAMETER {
          v            (mV)
          gSK_E2bar = .000001 (mho/cm2)
          zTau = 1              (ms)
          ek           (mV)
          cai          (mM)
}

ASSIGNED {
         zInf
         ik            (mA/cm2)
         gSK_E2	       (S/cm2)
}

STATE {
      z   FROM 0 TO 1
}

BREAKPOINT {
           SOLVE states METHOD cnexp
           gSK_E2  = gSK_E2bar * z
           ik   =  gSK_E2 * (v - ek)
}

DERIVATIVE states {
        rates(cai)
        z' = (zInf - z) / zTau
}

PROCEDURE rates(ca(mM)) {
          if(ca < 1e-7){
	              ca = ca + 1e-07
          }
          zInf = 1/(1 + (0.00043 / ca)^4.8)
}

INITIAL {
        rates(cai)
        z = zInf
}

Loading data, please wait...