ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/263988.

Model of peripheral nerve with ephaptic coupling (Capllonch-Juan & Sepulveda 2020)

 Download zip file 
Help downloading and running models
Accession:263988
We built a computational model of a peripheral nerve trunk in which the interstitial space between the fibers and the tissues is modelled using a resistor network, thus enabling distance-dependent ephaptic coupling between myelinated axons and between fascicles as well. We used the model to simulate a) the stimulation of a nerve trunk model with a cuff electrode, and b) the propagation of action potentials along the axons. Results were used to investigate the effect of ephaptic interactions on recruitment and selectivity stemming from artificial (i.e., neural implant) stimulation and on the relative timing between action potentials during propagation.
Reference:
1 . Capllonch-Juan M, Sepulveda F (2020) Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves. PLoS Comput Biol 16:e1007826 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Extracellular; Axon;
Brain Region(s)/Organism:
Cell Type(s): Myelinated neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Ephaptic coupling; Stimulus selectivity;
Implementer(s):
/
publication_data
dataset_01__fields
code
x86_64
gaines_sensory_flut.mod *
gaines_sensory_mysa.mod *
gaines_sensory_node.mod *
gaines_sensory_stin.mod *
MRG_AXNODE.mod *
gaines_sensory_flut.c *
gaines_sensory_flut.lo *
gaines_sensory_mysa.c *
gaines_sensory_mysa.lo *
gaines_sensory_node.c *
gaines_sensory_node.lo *
gaines_sensory_stin.c *
gaines_sensory_stin.lo *
libnrnmech.la *
mod_func.c *
mod_func.lo *
MRG_AXNODE.c *
MRG_AXNODE.lo *
special *
                            
/* Created by Language version: 7.5.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
 
#if METHOD3
extern int _method3;
#endif

#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
 
#define nrn_init _nrn_init__mrg_axnode
#define _nrn_initial _nrn_initial__mrg_axnode
#define nrn_cur _nrn_cur__mrg_axnode
#define _nrn_current _nrn_current__mrg_axnode
#define nrn_jacob _nrn_jacob__mrg_axnode
#define nrn_state _nrn_state__mrg_axnode
#define _net_receive _net_receive__mrg_axnode 
#define evaluate_fct evaluate_fct__mrg_axnode 
#define states states__mrg_axnode 
 
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
 
#define t _nt->_t
#define dt _nt->_dt
#define gnapbar _p[0]
#define gnabar _p[1]
#define gkbar _p[2]
#define gl _p[3]
#define ena _p[4]
#define ek _p[5]
#define el _p[6]
#define inap _p[7]
#define ina _p[8]
#define ik _p[9]
#define il _p[10]
#define mp_inf _p[11]
#define m_inf _p[12]
#define h_inf _p[13]
#define s_inf _p[14]
#define tau_mp _p[15]
#define tau_m _p[16]
#define tau_h _p[17]
#define tau_s _p[18]
#define mp _p[19]
#define m _p[20]
#define h _p[21]
#define s _p[22]
#define Dmp _p[23]
#define Dm _p[24]
#define Dh _p[25]
#define Ds _p[26]
#define q10_1 _p[27]
#define q10_2 _p[28]
#define q10_3 _p[29]
#define v _p[30]
#define _g _p[31]
 
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
 
#if defined(__cplusplus)
extern "C" {
#endif
 static int hoc_nrnpointerindex =  -1;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 extern double celsius;
 /* declaration of user functions */
 static void _hoc_Exp(void);
 static void _hoc_evaluate_fct(void);
 static void _hoc_vtrap(void);
 static void _hoc_vtrap8(void);
 static void _hoc_vtrap7(void);
 static void _hoc_vtrap6(void);
 static void _hoc_vtrap2(void);
 static void _hoc_vtrap1(void);
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 }
 static void _hoc_setdata() {
 Prop *_prop, *hoc_getdata_range(int);
 _prop = hoc_getdata_range(_mechtype);
   _setdata(_prop);
 hoc_retpushx(1.);
}
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 "setdata_mrg_axnode", _hoc_setdata,
 "Exp_mrg_axnode", _hoc_Exp,
 "evaluate_fct_mrg_axnode", _hoc_evaluate_fct,
 "vtrap_mrg_axnode", _hoc_vtrap,
 "vtrap8_mrg_axnode", _hoc_vtrap8,
 "vtrap7_mrg_axnode", _hoc_vtrap7,
 "vtrap6_mrg_axnode", _hoc_vtrap6,
 "vtrap2_mrg_axnode", _hoc_vtrap2,
 "vtrap1_mrg_axnode", _hoc_vtrap1,
 0, 0
};
#define Exp Exp_mrg_axnode
#define vtrap vtrap_mrg_axnode
#define vtrap8 vtrap8_mrg_axnode
#define vtrap7 vtrap7_mrg_axnode
#define vtrap6 vtrap6_mrg_axnode
#define vtrap2 vtrap2_mrg_axnode
#define vtrap1 vtrap1_mrg_axnode
 extern double Exp( _threadargsprotocomma_ double );
 extern double vtrap( _threadargsprotocomma_ double );
 extern double vtrap8( _threadargsprotocomma_ double );
 extern double vtrap7( _threadargsprotocomma_ double );
 extern double vtrap6( _threadargsprotocomma_ double );
 extern double vtrap2( _threadargsprotocomma_ double );
 extern double vtrap1( _threadargsprotocomma_ double );
 /* declare global and static user variables */
#define asC asC_mrg_axnode
 double asC = -5;
#define asB asB_mrg_axnode
 double asB = -27;
#define asA asA_mrg_axnode
 double asA = 0.3;
#define ahC ahC_mrg_axnode
 double ahC = 11;
#define ahB ahB_mrg_axnode
 double ahB = 114;
#define ahA ahA_mrg_axnode
 double ahA = 0.062;
#define amC amC_mrg_axnode
 double amC = 10.3;
#define amB amB_mrg_axnode
 double amB = 21.4;
#define amA amA_mrg_axnode
 double amA = 1.86;
#define ampC ampC_mrg_axnode
 double ampC = 10.2;
#define ampB ampB_mrg_axnode
 double ampB = 27;
#define ampA ampA_mrg_axnode
 double ampA = 0.01;
#define bsC bsC_mrg_axnode
 double bsC = -1;
#define bsB bsB_mrg_axnode
 double bsB = 10;
#define bsA bsA_mrg_axnode
 double bsA = 0.03;
#define bhC bhC_mrg_axnode
 double bhC = 13.4;
#define bhB bhB_mrg_axnode
 double bhB = 31.8;
#define bhA bhA_mrg_axnode
 double bhA = 2.3;
#define bmC bmC_mrg_axnode
 double bmC = 9.16;
#define bmB bmB_mrg_axnode
 double bmB = 25.7;
#define bmA bmA_mrg_axnode
 double bmA = 0.086;
#define bmpC bmpC_mrg_axnode
 double bmpC = 10;
#define bmpB bmpB_mrg_axnode
 double bmpB = 34;
#define bmpA bmpA_mrg_axnode
 double bmpA = 0.00025;
#define vtraub vtraub_mrg_axnode
 double vtraub = -80;
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 0,0,0
};
 static HocParmUnits _hoc_parm_units[] = {
 "gnapbar_mrg_axnode", "mho/cm2",
 "gnabar_mrg_axnode", "mho/cm2",
 "gkbar_mrg_axnode", "mho/cm2",
 "gl_mrg_axnode", "mho/cm2",
 "ena_mrg_axnode", "mV",
 "ek_mrg_axnode", "mV",
 "el_mrg_axnode", "mV",
 "inap_mrg_axnode", "mA/cm2",
 "ina_mrg_axnode", "mA/cm2",
 "ik_mrg_axnode", "mA/cm2",
 "il_mrg_axnode", "mA/cm2",
 0,0
};
 static double delta_t = 1;
 static double h0 = 0;
 static double m0 = 0;
 static double mp0 = 0;
 static double s0 = 0;
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 "vtraub_mrg_axnode", &vtraub_mrg_axnode,
 "ampA_mrg_axnode", &ampA_mrg_axnode,
 "ampB_mrg_axnode", &ampB_mrg_axnode,
 "ampC_mrg_axnode", &ampC_mrg_axnode,
 "bmpA_mrg_axnode", &bmpA_mrg_axnode,
 "bmpB_mrg_axnode", &bmpB_mrg_axnode,
 "bmpC_mrg_axnode", &bmpC_mrg_axnode,
 "amA_mrg_axnode", &amA_mrg_axnode,
 "amB_mrg_axnode", &amB_mrg_axnode,
 "amC_mrg_axnode", &amC_mrg_axnode,
 "bmA_mrg_axnode", &bmA_mrg_axnode,
 "bmB_mrg_axnode", &bmB_mrg_axnode,
 "bmC_mrg_axnode", &bmC_mrg_axnode,
 "ahA_mrg_axnode", &ahA_mrg_axnode,
 "ahB_mrg_axnode", &ahB_mrg_axnode,
 "ahC_mrg_axnode", &ahC_mrg_axnode,
 "bhA_mrg_axnode", &bhA_mrg_axnode,
 "bhB_mrg_axnode", &bhB_mrg_axnode,
 "bhC_mrg_axnode", &bhC_mrg_axnode,
 "asA_mrg_axnode", &asA_mrg_axnode,
 "asB_mrg_axnode", &asB_mrg_axnode,
 "asC_mrg_axnode", &asC_mrg_axnode,
 "bsA_mrg_axnode", &bsA_mrg_axnode,
 "bsB_mrg_axnode", &bsB_mrg_axnode,
 "bsC_mrg_axnode", &bsC_mrg_axnode,
 0,0
};
 static DoubVec hoc_vdoub[] = {
 0,0,0
};
 static double _sav_indep;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void  nrn_jacob(_NrnThread*, _Memb_list*, int);
 
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
 
#define _cvode_ieq _ppvar[0]._i
 static void _ode_matsol_instance1(_threadargsproto_);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
 "7.5.0",
"mrg_axnode",
 "gnapbar_mrg_axnode",
 "gnabar_mrg_axnode",
 "gkbar_mrg_axnode",
 "gl_mrg_axnode",
 "ena_mrg_axnode",
 "ek_mrg_axnode",
 "el_mrg_axnode",
 0,
 "inap_mrg_axnode",
 "ina_mrg_axnode",
 "ik_mrg_axnode",
 "il_mrg_axnode",
 "mp_inf_mrg_axnode",
 "m_inf_mrg_axnode",
 "h_inf_mrg_axnode",
 "s_inf_mrg_axnode",
 "tau_mp_mrg_axnode",
 "tau_m_mrg_axnode",
 "tau_h_mrg_axnode",
 "tau_s_mrg_axnode",
 0,
 "mp_mrg_axnode",
 "m_mrg_axnode",
 "h_mrg_axnode",
 "s_mrg_axnode",
 0,
 0};
 
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
 	_p = nrn_prop_data_alloc(_mechtype, 32, _prop);
 	/*initialize range parameters*/
 	gnapbar = 0.01;
 	gnabar = 3;
 	gkbar = 0.08;
 	gl = 0.007;
 	ena = 50;
 	ek = -90;
 	el = -90;
 	_prop->param = _p;
 	_prop->param_size = 32;
 	_ppvar = nrn_prop_datum_alloc(_mechtype, 1, _prop);
 	_prop->dparam = _ppvar;
 	/*connect ionic variables to this model*/
 
}
 static void _initlists();
  /* some states have an absolute tolerance */
 static Symbol** _atollist;
 static HocStateTolerance _hoc_state_tol[] = {
 0,0
};
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _MRG_AXNODE_reg() {
	int _vectorized = 1;
  _initlists();
 	register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 1);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
  hoc_register_prop_size(_mechtype, 32, 1);
  hoc_register_dparam_semantics(_mechtype, 0, "cvodeieq");
 	hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
 	hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 mrg_axnode /home/mcapll/JA1/simulations/stimulation_ja1_revisions/monophasic/current_00500nA/EC/x86_64/MRG_AXNODE.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
 }
static int _reset;
static char *modelname = "Motor Axon Node channels";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int evaluate_fct(_threadargsprotocomma_ double);
 
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
 static int _slist1[4], _dlist1[4];
 static int states(_threadargsproto_);
 
/*CVODE*/
 static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
   evaluate_fct ( _threadargscomma_ v ) ;
   Dmp = ( mp_inf - mp ) / tau_mp ;
   Dm = ( m_inf - m ) / tau_m ;
   Dh = ( h_inf - h ) / tau_h ;
   Ds = ( s_inf - s ) / tau_s ;
   }
 return _reset;
}
 static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
 evaluate_fct ( _threadargscomma_ v ) ;
 Dmp = Dmp  / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_mp )) ;
 Dm = Dm  / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_m )) ;
 Dh = Dh  / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_h )) ;
 Ds = Ds  / (1. - dt*( ( ( ( - 1.0 ) ) ) / tau_s )) ;
  return 0;
}
 /*END CVODE*/
 static int states (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
   evaluate_fct ( _threadargscomma_ v ) ;
    mp = mp + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_mp)))*(- ( ( ( mp_inf ) ) / tau_mp ) / ( ( ( ( - 1.0 ) ) ) / tau_mp ) - mp) ;
    m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_m)))*(- ( ( ( m_inf ) ) / tau_m ) / ( ( ( ( - 1.0 ) ) ) / tau_m ) - m) ;
    h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_h)))*(- ( ( ( h_inf ) ) / tau_h ) / ( ( ( ( - 1.0 ) ) ) / tau_h ) - h) ;
    s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tau_s)))*(- ( ( ( s_inf ) ) / tau_s ) / ( ( ( ( - 1.0 ) ) ) / tau_s ) - s) ;
   }
  return 0;
}
 
static int  evaluate_fct ( _threadargsprotocomma_ double _lv ) {
   double _la , _lb , _lv2 ;
 _la = q10_1 * vtrap1 ( _threadargscomma_ _lv ) ;
   _lb = q10_1 * vtrap2 ( _threadargscomma_ _lv ) ;
   tau_mp = 1.0 / ( _la + _lb ) ;
   mp_inf = _la / ( _la + _lb ) ;
   _la = q10_1 * vtrap6 ( _threadargscomma_ _lv ) ;
   _lb = q10_1 * vtrap7 ( _threadargscomma_ _lv ) ;
   tau_m = 1.0 / ( _la + _lb ) ;
   m_inf = _la / ( _la + _lb ) ;
   _la = q10_2 * vtrap8 ( _threadargscomma_ _lv ) ;
   _lb = q10_2 * bhA / ( 1.0 + Exp ( _threadargscomma_ - ( _lv + bhB ) / bhC ) ) ;
   tau_h = 1.0 / ( _la + _lb ) ;
   h_inf = _la / ( _la + _lb ) ;
   _lv2 = _lv - vtraub ;
   _la = q10_3 * asA / ( Exp ( _threadargscomma_ ( _lv2 + asB ) / asC ) + 1.0 ) ;
   _lb = q10_3 * bsA / ( Exp ( _threadargscomma_ ( _lv2 + bsB ) / bsC ) + 1.0 ) ;
   tau_s = 1.0 / ( _la + _lb ) ;
   s_inf = _la / ( _la + _lb ) ;
    return 0; }
 
static void _hoc_evaluate_fct(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r = 1.;
 evaluate_fct ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double vtrap ( _threadargsprotocomma_ double _lx ) {
   double _lvtrap;
 if ( _lx < - 50.0 ) {
     _lvtrap = 0.0 ;
     }
   else {
     _lvtrap = bsA / ( Exp ( _threadargscomma_ ( _lx + bsB ) / bsC ) + 1.0 ) ;
     }
   
return _lvtrap;
 }
 
static void _hoc_vtrap(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  vtrap ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double vtrap1 ( _threadargsprotocomma_ double _lx ) {
   double _lvtrap1;
 if ( fabs ( ( _lx + ampB ) / ampC ) < 1e-6 ) {
     _lvtrap1 = ampA * ampC ;
     }
   else {
     _lvtrap1 = ( ampA * ( _lx + ampB ) ) / ( 1.0 - Exp ( _threadargscomma_ - ( _lx + ampB ) / ampC ) ) ;
     }
   
return _lvtrap1;
 }
 
static void _hoc_vtrap1(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  vtrap1 ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double vtrap2 ( _threadargsprotocomma_ double _lx ) {
   double _lvtrap2;
 if ( fabs ( ( _lx + bmpB ) / bmpC ) < 1e-6 ) {
     _lvtrap2 = bmpA * bmpC ;
     }
   else {
     _lvtrap2 = ( bmpA * ( - ( _lx + bmpB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + bmpB ) / bmpC ) ) ;
     }
   
return _lvtrap2;
 }
 
static void _hoc_vtrap2(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  vtrap2 ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double vtrap6 ( _threadargsprotocomma_ double _lx ) {
   double _lvtrap6;
 if ( fabs ( ( _lx + amB ) / amC ) < 1e-6 ) {
     _lvtrap6 = amA * amC ;
     }
   else {
     _lvtrap6 = ( amA * ( _lx + amB ) ) / ( 1.0 - Exp ( _threadargscomma_ - ( _lx + amB ) / amC ) ) ;
     }
   
return _lvtrap6;
 }
 
static void _hoc_vtrap6(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  vtrap6 ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double vtrap7 ( _threadargsprotocomma_ double _lx ) {
   double _lvtrap7;
 if ( fabs ( ( _lx + bmB ) / bmC ) < 1e-6 ) {
     _lvtrap7 = bmA * bmC ;
     }
   else {
     _lvtrap7 = ( bmA * ( - ( _lx + bmB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + bmB ) / bmC ) ) ;
     }
   
return _lvtrap7;
 }
 
static void _hoc_vtrap7(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  vtrap7 ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double vtrap8 ( _threadargsprotocomma_ double _lx ) {
   double _lvtrap8;
 if ( fabs ( ( _lx + ahB ) / ahC ) < 1e-6 ) {
     _lvtrap8 = ahA * ahC ;
     }
   else {
     _lvtrap8 = ( ahA * ( - ( _lx + ahB ) ) ) / ( 1.0 - Exp ( _threadargscomma_ ( _lx + ahB ) / ahC ) ) ;
     }
   
return _lvtrap8;
 }
 
static void _hoc_vtrap8(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  vtrap8 ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
double Exp ( _threadargsprotocomma_ double _lx ) {
   double _lExp;
 if ( _lx < - 100.0 ) {
     _lExp = 0.0 ;
     }
   else {
     _lExp = exp ( _lx ) ;
     }
   
return _lExp;
 }
 
static void _hoc_Exp(void) {
  double _r;
   double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
   if (_extcall_prop) {_p = _extcall_prop->param; _ppvar = _extcall_prop->dparam;}else{ _p = (double*)0; _ppvar = (Datum*)0; }
  _thread = _extcall_thread;
  _nt = nrn_threads;
 _r =  Exp ( _p, _ppvar, _thread, _nt, *getarg(1) );
 hoc_retpushx(_r);
}
 
static int _ode_count(int _type){ return 4;}
 
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
     _ode_spec1 (_p, _ppvar, _thread, _nt);
 }}
 
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) { 
	double* _p; Datum* _ppvar;
 	int _i; _p = _pp; _ppvar = _ppd;
	_cvode_ieq = _ieq;
	for (_i=0; _i < 4; ++_i) {
		_pv[_i] = _pp + _slist1[_i];  _pvdot[_i] = _pp + _dlist1[_i];
		_cvode_abstol(_atollist, _atol, _i);
	}
 }
 
static void _ode_matsol_instance1(_threadargsproto_) {
 _ode_matsol1 (_p, _ppvar, _thread, _nt);
 }
 
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
   double* _p; Datum* _ppvar; Datum* _thread;
   Node* _nd; double _v; int _iml, _cntml;
  _cntml = _ml->_nodecount;
  _thread = _ml->_thread;
  for (_iml = 0; _iml < _cntml; ++_iml) {
    _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
    _nd = _ml->_nodelist[_iml];
    v = NODEV(_nd);
 _ode_matsol_instance1(_threadargs_);
 }}

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
  h = h0;
  m = m0;
  mp = mp0;
  s = s0;
 {
   q10_1 = pow( 2.2 , ( ( celsius - 20.0 ) / 10.0 ) ) ;
   q10_2 = pow( 2.9 , ( ( celsius - 20.0 ) / 10.0 ) ) ;
   q10_3 = pow( 3.0 , ( ( celsius - 36.0 ) / 10.0 ) ) ;
   evaluate_fct ( _threadargscomma_ v ) ;
   mp = mp_inf ;
   m = m_inf ;
   h = h_inf ;
   s = s_inf ;
   }
 
}
}

static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v = _v;
 initmodel(_p, _ppvar, _thread, _nt);
}
}

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
   inap = gnapbar * mp * mp * mp * ( v - ena ) ;
   ina = gnabar * m * m * m * h * ( v - ena ) ;
   ik = gkbar * s * ( v - ek ) ;
   il = gl * ( v - el ) ;
   }
 _current += ina;
 _current += inap;
 _current += ik;
 _current += il;

} return _current;
}

static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 _g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
 	{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
 	}
 _g = (_g - _rhs)/.001;
#if CACHEVEC
  if (use_cachevec) {
	VEC_RHS(_ni[_iml]) -= _rhs;
  }else
#endif
  {
	NODERHS(_nd) -= _rhs;
  }
 
}
 
}

static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml];
#if CACHEVEC
  if (use_cachevec) {
	VEC_D(_ni[_iml]) += _g;
  }else
#endif
  {
     _nd = _ml->_nodelist[_iml];
	NODED(_nd) += _g;
  }
 
}
 
}

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
    _ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
#if CACHEVEC
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
  }else
#endif
  {
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
  }
 v=_v;
{
 {   states(_p, _ppvar, _thread, _nt);
  }}}

}

static void terminal(){}

static void _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
 _slist1[0] = &(mp) - _p;  _dlist1[0] = &(Dmp) - _p;
 _slist1[1] = &(m) - _p;  _dlist1[1] = &(Dm) - _p;
 _slist1[2] = &(h) - _p;  _dlist1[2] = &(Dh) - _p;
 _slist1[3] = &(s) - _p;  _dlist1[3] = &(Ds) - _p;
_first = 0;
}

#if defined(__cplusplus)
} /* extern "C" */
#endif

Loading data, please wait...