Model of peripheral nerve with ephaptic coupling (Capllonch-Juan & Sepulveda 2020)

 Download zip file 
Help downloading and running models
Accession:263988
We built a computational model of a peripheral nerve trunk in which the interstitial space between the fibers and the tissues is modelled using a resistor network, thus enabling distance-dependent ephaptic coupling between myelinated axons and between fascicles as well. We used the model to simulate a) the stimulation of a nerve trunk model with a cuff electrode, and b) the propagation of action potentials along the axons. Results were used to investigate the effect of ephaptic interactions on recruitment and selectivity stemming from artificial (i.e., neural implant) stimulation and on the relative timing between action potentials during propagation.
Reference:
1 . Capllonch-Juan M, Sepulveda F (2020) Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves. PLoS Comput Biol 16:e1007826 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Extracellular; Axon;
Brain Region(s)/Organism:
Cell Type(s): Myelinated neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Ephaptic coupling; Stimulus selectivity;
Implementer(s):
/
publication_data
dataset_02__stimulation
noec
code
x86_64
.libs
gaines_sensory_flut.mod *
gaines_sensory_mysa.mod *
gaines_sensory_node.mod *
gaines_sensory_stin.mod *
MRG_AXNODE.mod *
gaines_sensory_flut.c
gaines_sensory_flut.lo
gaines_sensory_mysa.c
gaines_sensory_mysa.lo
gaines_sensory_node.c
gaines_sensory_node.lo
gaines_sensory_stin.c
gaines_sensory_stin.lo
libnrnmech.la *
mod_func.c *
mod_func.lo *
MRG_AXNODE.c
MRG_AXNODE.lo *
special
                            
TITLE Sensory Axon Node channels

: 06/16
: Jessica Gaines
:
: Modification of channel properties
:
: 04/15
: Lane Heyboer
:
: Fast K+ current
:
: 2/02
: Cameron C. McIntyre
:
: Fast Na+, Persistant Na+, Slow K+, and Leakage currents 
: responsible for nodal action potential
: Iterative equations H-H notation rest = -80 mV
:
: This model is described in detail in:
: 
: Gaines JS, Finn KE, Slopsema JP, Heyboer LA, Polasek KH. A Model of 
: Motor and Sensory Axon Activation in the Median Nerve Using Surface 
: Electrical Stimulation. Journal of Computational Neuroscience, 2018.
:
: McIntyre CC, Richardson AG, and Grill WM. Modeling the excitability of
: mammalian nerve fibers: influence of afterpotentials on the recovery
: cycle. Journal of Neurophysiology 87:995-1006, 2002.

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX gaines_sensory_node
	NONSPECIFIC_CURRENT ina
	NONSPECIFIC_CURRENT inap
	NONSPECIFIC_CURRENT ik
	NONSPECIFIC_CURRENT il
	NONSPECIFIC_CURRENT ikf
	RANGE gnapbar, gnabar, gkbar, gl, gkf, ena, ek, el, ekf
	RANGE mp_inf, m_inf, h_inf, s_inf, n_inf
	RANGE tau_mp, tau_m, tau_h, tau_s, tau_n
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {

    : channel conductances
	gnapbar = 0.01	(mho/cm2)
	gnabar	= 3.0	(mho/cm2)
	gkbar   = 0.04106 	(mho/cm2)
	gl	= 0.006005 (mho/cm2)
	gkf	= 0.02737	(mho/cm2)

    : reversal potentials
	ena     = 50.0  (mV)
	ek      = -90.0 (mV)
	el	= -90.0 (mV)
	ekf	= -90.0 (mV)

    : variables read in from .hoc file
	celsius		(degC)
	dt              (ms)
	v               (mV)
	vtraub=-80

    : parameters determining rate constants

    : persistent Na+
	ampA = 0.00957
	ampB = 26.852
	ampC = 10.2
	bmpA = 0.0002401
	bmpB = 33.8333
	bmpC = 10

    : fast Na+
	amA = 1.77753
	amB = 20.1795
	amC = 10.3
	bmA = 0.0823
	bmB = 25.4746
	bmC = 9.16
	ahA = 0.075286
	ahB = 112.7124
	ahC = 8.3910
	bhA = 2.8083
	bhB = 30.5435
	bhC = 10.2263

    : slow K+
	asA = 0.3
	asB = -27
	asC = -5
	bsA = 0.03
	bsB = 10
	bsC = -1

    : fast K+
	anA = 0.0462
	anB = -83.2
	anC = 1.1
	bnA = 0.0824
	bnB = -66
	bnC = 10.5
}

STATE {
	mp m h s n
}

ASSIGNED {
	inap    (mA/cm2)
	ina	(mA/cm2)
	ik      (mA/cm2)
	il      (mA/cm2)
	ikf	(mA/cm2)
	mp_inf
	m_inf
	h_inf
	s_inf
	n_inf
	tau_mp
	tau_m
	tau_h
	tau_s
	tau_n
	q10_1
	q10_2
	q10_3
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	inap = gnapbar * mp*mp*mp * (v - ena)  : slow sodium
	ina = gnabar * m*m*m*h * (v - ena) : fast sodium
	ik   = gkbar * s * (v - ek) : slow potassium
	il   = gl * (v - el) : leak
	ikf = gkf * n*n*n*n* (v-ekf) : fast potassium
}

DERIVATIVE states {   : exact Hodgkin-Huxley equations
       evaluate_fct(v)
	mp'= (mp_inf - mp) / tau_mp
	m' = (m_inf - m) / tau_m
	h' = (h_inf - h) / tau_h
	s' = (s_inf - s) / tau_s
	n' = (n_inf - n) / tau_n  : fast potassium
}

UNITSOFF

INITIAL {
:
:	Q10 adjustment
:   Temperature dependence
:

	q10_1 = 2.2 ^ ((celsius-20)/ 10 )
	q10_2 = 2.9 ^ ((celsius-20)/ 10 )
	q10_3 = 3.0 ^ ((celsius-36)/ 10 )

	evaluate_fct(v)
	mp = mp_inf
	m = m_inf
	h = h_inf
	s = s_inf
	n = n_inf
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

    : persistent Na+
	a = q10_1*vtrap1(v)
	b = q10_1*vtrap2(v)
	tau_mp = 1 / (a + b)
	mp_inf = a / (a + b)

    : fast Na+
	a = q10_1*vtrap6(v)
	b = q10_1*vtrap7(v)
	tau_m = 1 / (a + b)
	m_inf = a / (a + b)

	a = q10_2*vtrap8(v)
	b = q10_2*bhA / (1 + Exp(-(v+bhB)/bhC))
	tau_h = 1 / (a + b)
	h_inf = a / (a + b)

	v2 = v - vtraub : convert to traub convention

    : slow K+
	a = q10_3*asA / (Exp((v2+asB)/asC) + 1) 
	b = q10_3*bsA / (Exp((v2+bsB)/bsC) + 1)
	tau_s = 1 / (a + b)
	s_inf = a / (a + b)

    : fast K+
	a = q10_3*vtrapNA(v)
	b = q10_3*vtrapNB(v)
	tau_n = 1 / (a + b)
	n_inf = a / (a + b)
}

: vtrap functions to prevent discontinuity
FUNCTION vtrap(x) {
	if (x < -50) {
		vtrap = 0
	}else{
		vtrap = bsA / (Exp((x+bsB)/bsC) + 1)
	}
}

FUNCTION vtrap1(x) {
	if (fabs((x+ampB)/ampC) < 1e-6) {
		vtrap1 = ampA*ampC
	}else{
		vtrap1 = (ampA*(x+ampB)) / (1 - Exp(-(x+ampB)/ampC))
	}
}

FUNCTION vtrap2(x) {
	if (fabs((x+bmpB)/bmpC) < 1e-6) {
		vtrap2 = bmpA*bmpC : Ted Carnevale minus sign bug fix
	}else{
		vtrap2 = (bmpA*(-(x+bmpB))) / (1 - Exp((x+bmpB)/bmpC))
	}
}

FUNCTION vtrap6(x) {
	if (fabs((x+amB)/amC) < 1e-6) {
		vtrap6 = amA*amC
	}else{
		vtrap6 = (amA*(x+amB)) / (1 - Exp(-(x+amB)/amC))
	}
}

FUNCTION vtrap7(x) {
	if (fabs((x+bmB)/bmC) < 1e-6) {
		vtrap7 = bmA*bmC : Ted Carnevale minus sign bug fix
	}else{
		vtrap7 = (bmA*(-(x+bmB))) / (1 - Exp((x+bmB)/bmC))
	}
}

FUNCTION vtrap8(x) {
	if (fabs((x+ahB)/ahC) < 1e-6) {
		vtrap8 = ahA*ahC : Ted Carnevale minus sign bug fix
	}else{
		vtrap8 = (ahA*(-(x+ahB))) / (1 - Exp((x+ahB)/ahC)) 
	}
}

FUNCTION vtrapNA(x){
    if(fabs((anB - x)/anC) < 1e-6){
        vtrapNA = anA*anC
    }else{
        vtrapNA = anA*(v-anB)/(1-Exp((anB-v)/anC))
    }
}

FUNCTION vtrapNB(x){
    if(fabs((x - bnB)/bnC) < 1e-6){
        vtrapNB = bnA*bnC  
    }else{
        vtrapNB = bnA*(bnB-v)/(1-Exp((v-bnB)/bnC))
    }
}

FUNCTION Exp(x) {
	if (x < -100) {
		Exp = 0
	}else{
		Exp = exp(x)
	}
}

UNITSON

Loading data, please wait...