Model of peripheral nerve with ephaptic coupling (Capllonch-Juan & Sepulveda 2020)

 Download zip file 
Help downloading and running models
Accession:263988
We built a computational model of a peripheral nerve trunk in which the interstitial space between the fibers and the tissues is modelled using a resistor network, thus enabling distance-dependent ephaptic coupling between myelinated axons and between fascicles as well. We used the model to simulate a) the stimulation of a nerve trunk model with a cuff electrode, and b) the propagation of action potentials along the axons. Results were used to investigate the effect of ephaptic interactions on recruitment and selectivity stemming from artificial (i.e., neural implant) stimulation and on the relative timing between action potentials during propagation.
Reference:
1 . Capllonch-Juan M, Sepulveda F (2020) Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves. PLoS Comput Biol 16:e1007826 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Extracellular; Axon;
Brain Region(s)/Organism:
Cell Type(s): Myelinated neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Ephaptic coupling; Stimulus selectivity;
Implementer(s):
/
publication_data
dataset_03__propagation
bundle_1_nominalEC
data
models
settings
src
x86_64
AXNODE.mod *
aaa_info_dataset
algebra.py *
analysis.py *
anatomy.py *
biophysics.py *
circlepacker.py *
contourhandler.py *
electrodes.py *
fill_nerve.py *
geometry.py *
get_extstim.py *
read_results.py *
sim_launcher.py *
simcontrol.py *
tessellations.py *
tools.py *
visualisation.py *
workspace.py *
                            
"""
Code modified from 13 November 2018. Work in progress
"""

import os
from neuron import h, gui
from collections import OrderedDict

import workspace as ws
import simcontrol
import electrodes
import anatomy
import analysis as als
import biophysics as bio
import visualisation as vis



# Prepare the necessary stuff for the simulation
simcontrol.prepare_simulation()

# Run the simulation
simcontrol.run()

# Postprocessing
als.postprocessing()

Loading data, please wait...