Model of peripheral nerve with ephaptic coupling (Capllonch-Juan & Sepulveda 2020)

 Download zip file 
Help downloading and running models
Accession:263988
We built a computational model of a peripheral nerve trunk in which the interstitial space between the fibers and the tissues is modelled using a resistor network, thus enabling distance-dependent ephaptic coupling between myelinated axons and between fascicles as well. We used the model to simulate a) the stimulation of a nerve trunk model with a cuff electrode, and b) the propagation of action potentials along the axons. Results were used to investigate the effect of ephaptic interactions on recruitment and selectivity stemming from artificial (i.e., neural implant) stimulation and on the relative timing between action potentials during propagation.
Reference:
1 . Capllonch-Juan M, Sepulveda F (2020) Modelling the effects of ephaptic coupling on selectivity and response patterns during artificial stimulation of peripheral nerves. PLoS Comput Biol 16:e1007826 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Extracellular; Axon;
Brain Region(s)/Organism:
Cell Type(s): Myelinated neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Ephaptic coupling; Stimulus selectivity;
Implementer(s):
/
publication_data
dataset_03__propagation
bundle_2_nominalEC
src
hoc
AXNODE.mod *
axon_mye_MRG_COMPLETE.hoc *
axon_mye_MRG_COMPLETE_allsecs_rightorder.hoc *
axon_mye_MRG_COMPLETE_dontforgetanysection.hoc *
axon_mye_MRG_STINonly.hoc *
axon_mye_old.hoc *
axon_unm.hoc *
ephap.hoc *
gaines_sensory.hoc *
MRG_NAELC.hoc *
MRG_NAELC_thick.hoc *
MRG_NAELC_thick_v2.hoc *
wire.hoc *
                            
TITLE Motor Axon Node channels

: 2/02
: Cameron C. McIntyre
:
: Fast Na+, Persistant Na+, Slow K+, and Leakage currents 
: responsible for nodal action potential
: Iterative equations H-H notation rest = -80 mV
:
: This model is described in detail in:
:
: McIntyre CC, Richardson AG, and Grill WM. Modeling the excitability of
: mammalian nerve fibers: influence of afterpotentials on the recovery
: cycle. Journal of Neurophysiology 87:995-1006, 2002.

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX axnode
	NONSPECIFIC_CURRENT ina
	NONSPECIFIC_CURRENT inap
	NONSPECIFIC_CURRENT ik
	NONSPECIFIC_CURRENT il
	RANGE gnapbar, gnabar, gkbar, gl, ena, ek, el
	RANGE mp_inf, m_inf, h_inf, s_inf
	RANGE tau_mp, tau_m, tau_h, tau_s
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {

	gnapbar = 0.01	(mho/cm2)
	gnabar	= 3.0	(mho/cm2)
	gkbar   = 0.08 	(mho/cm2)
	gl	= 0.007 (mho/cm2)
	ena     = 50.0  (mV)
	ek      = -90.0 (mV)
	el	= -90.0 (mV)
	celsius		(degC)
	dt              (ms)
	v               (mV)
	vtraub=-80
	ampA = 0.01
	ampB = 27
	ampC = 10.2
	bmpA = 0.00025
	bmpB = 34
	bmpC = 10
	amA = 1.86
	amB = 21.4
	amC = 10.3
	bmA = 0.086
	bmB = 25.7
	bmC = 9.16
	ahA = 0.062
	ahB = 114.0
	ahC = 11.0
	bhA = 2.3
	bhB = 31.8
	bhC = 13.4
	asA = 0.3
	asB = -27
	asC = -5
	bsA = 0.03
	bsB = 10
	bsC = -1
}

STATE {
	mp m h s
}

ASSIGNED {
	inap    (mA/cm2)
	ina	(mA/cm2)
	ik      (mA/cm2)
	il      (mA/cm2)
	mp_inf
	m_inf
	h_inf
	s_inf
	tau_mp
	tau_m
	tau_h
	tau_s
	q10_1
	q10_2
	q10_3
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	inap = gnapbar * mp*mp*mp * (v - ena)
	ina = gnabar * m*m*m*h * (v - ena)
	ik   = gkbar * s * (v - ek)
	il   = gl * (v - el)
}

DERIVATIVE states {   : exact Hodgkin-Huxley equations
       evaluate_fct(v)
	mp'= (mp_inf - mp) / tau_mp
	m' = (m_inf - m) / tau_m
	h' = (h_inf - h) / tau_h
	s' = (s_inf - s) / tau_s
}

UNITSOFF

INITIAL {
:
:	Q10 adjustment
:

	q10_1 = 2.2 ^ ((celsius-20)/ 10 )
	q10_2 = 2.9 ^ ((celsius-20)/ 10 )
	q10_3 = 3.0 ^ ((celsius-36)/ 10 )

	evaluate_fct(v)
	mp = mp_inf
	m = m_inf
	h = h_inf
	s = s_inf
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

	a = q10_1*vtrap1(v)
	b = q10_1*vtrap2(v)
	tau_mp = 1 / (a + b)
	mp_inf = a / (a + b)

	a = q10_1*vtrap6(v)
	b = q10_1*vtrap7(v)
	tau_m = 1 / (a + b)
	m_inf = a / (a + b)

	a = q10_2*vtrap8(v)
	b = q10_2*bhA / (1 + Exp(-(v+bhB)/bhC))
	tau_h = 1 / (a + b)
	h_inf = a / (a + b)

	v2 = v - vtraub : convert to traub convention

	a = q10_3*asA / (Exp((v2+asB)/asC) + 1) 
	b = q10_3*bsA / (Exp((v2+bsB)/bsC) + 1)
	tau_s = 1 / (a + b)
	s_inf = a / (a + b)
}

FUNCTION vtrap(x) {
	if (x < -50) {
		vtrap = 0
	}else{
		vtrap = bsA / (Exp((x+bsB)/bsC) + 1)
	}
}

FUNCTION vtrap1(x) {
	if (fabs((x+ampB)/ampC) < 1e-6) {
		vtrap1 = ampA*ampC
	}else{
		vtrap1 = (ampA*(x+ampB)) / (1 - Exp(-(x+ampB)/ampC))
	}
}

FUNCTION vtrap2(x) {
	if (fabs((x+bmpB)/bmpC) < 1e-6) {
		vtrap2 = bmpA*bmpC : Ted Carnevale minus sign bug fix
	}else{
		vtrap2 = (bmpA*(-(x+bmpB))) / (1 - Exp((x+bmpB)/bmpC))
	}
}

FUNCTION vtrap6(x) {
	if (fabs((x+amB)/amC) < 1e-6) {
		vtrap6 = amA*amC
	}else{
		vtrap6 = (amA*(x+amB)) / (1 - Exp(-(x+amB)/amC))
	}
}

FUNCTION vtrap7(x) {
	if (fabs((x+bmB)/bmC) < 1e-6) {
		vtrap7 = bmA*bmC : Ted Carnevale minus sign bug fix
	}else{
		vtrap7 = (bmA*(-(x+bmB))) / (1 - Exp((x+bmB)/bmC))
	}
}

FUNCTION vtrap8(x) {
	if (fabs((x+ahB)/ahC) < 1e-6) {
		vtrap8 = ahA*ahC : Ted Carnevale minus sign bug fix
	}else{
		vtrap8 = (ahA*(-(x+ahB))) / (1 - Exp((x+ahB)/ahC)) 
	}
}

FUNCTION Exp(x) {
	if (x < -100) {
		Exp = 0
	}else{
		Exp = exp(x)
	}
}

UNITSON

Loading data, please wait...